Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 6, pp 1389–1401 | Cite as

Towards understanding the behavior of physical systems using information theory

Regular Article Information Theory of Dynamic Networks

Abstract

One of the goals of complex network analysis is to identify the most influential nodes, i.e., the nodes that dictate the dynamics of other nodes. In the case of autonomous systems or transportation networks, highly connected hubs play a preeminent role in diffusing the flow of information and viruses; in contrast, in language evolution most linguistic norms come from the peripheral nodes who have only few contacts. Clearly a topological analysis of the interactions alone is not sufficient to identify the nodes that drive the state of the network. Here we show how information theory can be used to quantify how the dynamics of individual nodes propagate through a system. We interpret the state of a node as a storage of information about the state of other nodes, which is quantified in terms of Shannon information. This information is transferred through interactions and lost due to noise, and we calculate how far it can travel through a network. We apply this concept to a model of opinion formation in a complex social network to calculate the impact of each node by measuring how long its opinion is remembered by the network. Counter-intuitively we find that the dynamics of opinions are not determined by the hubs or peripheral nodes, but rather by nodes with an intermediate connectivity.

Keywords

Social Network European Physical Journal Special Topic Degree Distribution Scale Free Network State Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Albert, H. Jeong, A.-L. Barabasi, Nature 406, 378 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    A. Aleksiejuk, J.A. Holyst, D. Stauffer, Physica A 310, 260 (2002)ADSCrossRefMATHGoogle Scholar
  3. 3.
    S. Aral, D. Walker, Science, 337, 337 (2012)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    R.P. Bagozzi, U.M. Dholakia, J. Interactive Marketing 16, 2 (2002)CrossRefGoogle Scholar
  5. 5.
    A.-L. Barabasi, R. Albert, Emergence of scaling in random networks [eprint arXiv:cond-mat/9910332], October (1999)Google Scholar
  6. 6.
    F. Bass, Management Sci. 15, 215 (1969)CrossRefMATHGoogle Scholar
  7. 7.
    C.H. Bennett, Dissipation, information, computational complexity and the definition of organization, edited by David Pines, Emerging Syntheses in Science, (Reading, MA, 1987), p. 215Google Scholar
  8. 8.
    C.H. Bennett, Stud. History Philosophy Mod. Phys. 34, 501 (2003)CrossRefGoogle Scholar
  9. 9.
    C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    D. Centola, M. Macy, Amer. J. Sociol. 113, 702 (2007)CrossRefGoogle Scholar
  11. 11.
    J.S. Coleman, E. Katz, H. Menzel, Medical innovation: A Diffusion Study, Vol. 46 (Bobbs-Merrill, 1966)Google Scholar
  12. 12.
    T.M. Cover, J.A. Thomas, Elements of Information Theory, Vol. 6 (Wiley-Interscience, 1991)Google Scholar
  13. 13.
    J.P. Crutchfield, C.J. Ellison, J.R. Mahoney, Phys. Rev. Lett. 103, 094101 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    J.P. Crutchfield, D.P. Feldman, Phys. Rev. E 55, R1239 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Crutchfield, D.P. Feldman, Chaos 13, 25 (2003)MathSciNetADSCrossRefMATHGoogle Scholar
  16. 16.
    U.M. Dholakia, R.P. Bagozzi, L.K. Pearo, Int. J. Res. Marketing 21, 241 (2004)CrossRefGoogle Scholar
  17. 17.
    T.L. Duncan, J.S. Semura, Found. Phys. 37, 1767 (2007)MathSciNetADSCrossRefMATHGoogle Scholar
  18. 18.
    W. Ebeling, G. Nicolis, Chaos, Solitons Fractals 2, 635 (1992)MathSciNetADSCrossRefMATHGoogle Scholar
  19. 19.
    P. Erdös, A. Rényi, Publicationes Mathematicae (Debrecen) 6, 290 (1959)MathSciNetMATHGoogle Scholar
  20. 20.
    Z. Fagyal, Social Networks 15 (2009)Google Scholar
  21. 21.
    S. Galam, S. Moscovici, Eur. J. Social Psychol. 21, 49 (1991)CrossRefGoogle Scholar
  22. 22.
    F. Geier, J. Timmer, C. Fleck, BMC Systems Biol. 1, 11 (2007)CrossRefGoogle Scholar
  23. 23.
    J.-D.J. Han, N. Bertin, T. Hao, D.S. Goldberg, G.F. Berriz, L.V. Zhang, D. Dupuy, A.J.M. Walhout, M.E. Cusick, F.P. Roth, M. Vidal, Nature 430 (2004)Google Scholar
  24. 24.
    E.T. Jaynes, The Phys. Rev. 106, 620 (1957)MathSciNetADSCrossRefMATHGoogle Scholar
  25. 25.
    R. Landauer, IBM J. Res. Develop. 5, 183 (1961)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    R. Landauer, Phys. Lett. A 217, 188 (1996)MathSciNetADSCrossRefMATHGoogle Scholar
  27. 27.
    M. Leone, A. Vázquez, A. Vespignani, R. Zecchina, Eur. Phys. J. B 28, 191 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    J. Leskovec, L.A. Adamic, B.A. Huberman, ACM Trans. Web 1 (2007)Google Scholar
  29. 29.
    Y.-Y. Liu, J.-J. Slotine, A.-L. Barabasi, Nature 473, 167 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    S. Lloyd, Nature 406, 1047 (2000)CrossRefADSGoogle Scholar
  31. 31.
    S. Lloyd, Programming the Universe: A Quantum Computer Scientist Takes On the Cosmos. Knopf, 2006Google Scholar
  32. 32.
    B. Mashhoon, Found. Phys. 15, 497 (1985)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    B. Mashhoon, D. Theiss, Relativistic effects in the motion of the moon, in Gyros, Clocks, Interferometers: Testing Relativistic Gravity in Space, edited by Claus Lämmerzahl, C. Everitt, and Friedrich Hehl, Lecture Notes in Physics, Vol. 562 (Springer Berlin / Heidelberg, 2001), p. 310Google Scholar
  34. 34.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)ADSCrossRefGoogle Scholar
  35. 35.
    M.E.J. Newman, SIAM Rev. 45, 167 (2003)MathSciNetADSCrossRefMATHGoogle Scholar
  36. 36.
    S.-C. Niu, Math. Probl. Eng. 8, 249 (2002)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    E.M. Rogers, Diff. Innovations (Free Press, 2003)Google Scholar
  38. 38.
    B. Ryan, N.C Gross, Rural Sociology 8, 15 (1943)Google Scholar
  39. 39.
    V. Sood, T. Antal, S. Redner, Phys. Rev. E 77, 1 (2008)MathSciNetCrossRefGoogle Scholar
  40. 40.
    T.W. Valente, R.L. Davis, The Annals of the American Academy (1999)Google Scholar
  41. 41.
    K. Wiesner, Chaos 20, 037114 (2010)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Rick Quax
    • 1
  • Andrea Apolloni
    • 2
  • Peter M. A. Sloot
    • 1
    • 3
    • 4
  1. 1.Computational ScienceUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.I.S.I. FoundationTurinItaly
  3. 3.National Research University of Information Technologies, Mechanics and Optics (ITMO)Saint PetersburgRussia
  4. 4.Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations