The European Physical Journal Special Topics

, Volume 222, Issue 6, pp 1347–1358 | Cite as

Inferring epidemiological parameters from phylogenetic information for the HIV-1 epidemic among MSM

  • Rick QuaxEmail author
  • David A. M. C. van de Vijver
  • Dineke Frentz
  • Peter M. A. Sloot
Regular Article Simultaneous Dynamics ON and OF Networks


The HIV-1 epidemic in Europe is primarily sustained by a dynamic topology of sexual interactions among MSM who have individual immune systems and behavior. This epidemiological process shapes the phylogeny of the virus population. Both fields of epidemic modeling and phylogenetics have a long history, however it remains difficult to use phylogenetic data to infer epidemiological parameters such as the structure of the sexual network and the per-act infectiousness. This is because phylogenetic data is necessarily incomplete and ambiguous. Here we show that the cluster-size distribution indeed contains information about epidemiological parameters using detailed numberical experiments. We simulate the HIV epidemic among MSM many times using the Monte Carlo method with all parameter values and their ranges taken from literature. For each simulation and the corresponding set of parameter values we calculate the likelihood of reproducing an observed cluster-size distribution. The result is an estimated likelihood distribution of all parameters from the phylogenetic data, in particular the structure of the sexual network, the per-act infectiousness, and the risk behavior reduction upon diagnosis. These likelihood distributions encode the knowledge provided by the observed cluster-size distrbution, which we quantify using information theory. Our work suggests that the growing body of genetic data of patients can be exploited to understand the underlying epidemiological process.


European Physical Journal Special Topic Recent Common Ancestor Infection Event Phylogenetic Information Sexual Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    What is really happening with HIV trends in the United States? Modeling the national epidemic. Presented at the National HIV Prevention Conference, Session T1-B11-13 (Atlanta, GA, June, 2005)Google Scholar
  2. 2.
    Health Protection Agency. Hiv in the united kingdom: 2011 report. Technical Report PCV13, Health Protection Services (London, November, 2011)Google Scholar
  3. 3.
    M.S. Cohen, Y.Q. Chen, M. McCauley, T. Gamble, M.C. Hosseinipour, N. Kumarasamy, J.G. Hakim, J. Kumwenda, B. Grinsztejn, J.H.S. Pilotto, S.V. Godbole, S. Mehendale, S. Chariyalertsak, B.R. Santos, K.H. Mayer, I.F. Hoffman, S.H. Eshleman, E. Piwowar-Manning, L. Wang, J. Makhema, L.A. Mills, G. de Bruyn, I. Sanne, J. Eron, J. Gallant, D. Havlir, S. Swindells, H. Ribaudo, V. Elharrar, D. Burns, T.E. Taha, K. Nielsen-Saines, D. Celentano, M. Essex, T.R. Fleming, New England J. Med. 365, 493 (2011)CrossRefGoogle Scholar
  4. 4.
    T.M. Cover, J.A. Thomas, Elements of information theory, Vol. 6 (Wiley-Interscience, 1991)Google Scholar
  5. 5.
    K.R. Davis, S.C. Weller, Family Planning Perspectives 31, 272 (1999)CrossRefGoogle Scholar
  6. 6.
    E. de Silva, Neil M. Ferguson, C. Fraser, J. Royal Soc. Interface (2012)Google Scholar
  7. 7.
    M. Dorrucci, M. Balducci, P. Pezzotti, A. Sinicco, F. Alberici, G. Rezza, Italian HIV Seroconversion Study, JAIDS J. Acquired Immune Deficiency Syndr. 22, 65 (1999)CrossRefGoogle Scholar
  8. 8.
    S.Y.W. Ho, B. Shapiro, Molec. Ecol. Res. 11, 423 (2011)CrossRefGoogle Scholar
  9. 9.
    I. Hurtado, I. Alastrue, I. Ferreros, J. del Amo, C. Santos, T. Tasa, I. Hernández-Aguado, S. Prez-Hoyos, Sexually Transmitted Inf. 83, 23 (2007)CrossRefGoogle Scholar
  10. 10.
    D. Kothe, R.H. Byers, S.P. Caudill, G.A. Satten, R.S. Janssen, W. Harry Hannon, J.V. Mei, JAIDS J. Acquired Immune Deficiency Syndr. 33, 625 (2003)CrossRefGoogle Scholar
  11. 11.
    A.J. Leigh Brown, S.J. Lycett, L. Weinert, G.J. Hughes, E. Fearnhill, D.T. Dunn, J. Infectious Diseases 204, 1463 (2011)CrossRefGoogle Scholar
  12. 12.
    J.-J. Parienti, V. Massari, D. Descamps, A. Vabret, E. Bouvet, B. Larouz, R. Verdon, Clinical Infectious Diseases 38, 1311 (2004)CrossRefGoogle Scholar
  13. 13.
    R. Quax, D.A. Bader, P.M.A. Sloot, Int. J. Multi-scale Comput. Eng. 9, 201 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Schneeberger, C.H. Mercer, S.A.J. Gregson, N.M. Ferguson, C.A. Nyamukapa, R.M. Anderson, A.M. Johnson, G.P. Garnett, Sexually Transmitted Diseases 31, 380 (2004)CrossRefGoogle Scholar
  15. 15.
    T. Stadler, R. Kouyos, V. von Wyl, S. Yerly, J. Boni, P. Burgisser, T. Klimkait, B. Joos, P. Rieder, D. Xie, H.F. Gunthard, A.J. Drummond, S. Bonhoeffer, the Swiss HIV Cohort Study, Molec. Biol. Evolution 29, 347 (2012)CrossRefGoogle Scholar
  16. 16.
    Time from hiv-1 seroconversion to aids and death before widespread use of highly-active antiretroviral therapy: a collaborative re-analysis. The Lancet 355, 1131 (2000)Google Scholar
  17. 17.
    Medical Research Councils Clinical Trials Unit. Uk hiv drug resistance database, May (2012)Google Scholar
  18. 18.
    E. Vitinghoff, J. Douglas, F. Judon, D. McKiman, K. MacQueen, S.P. Buchinder, Amer. J. Epidemiol. 150, 306 (1999)CrossRefGoogle Scholar
  19. 19.
    M.J. Wawer, R.H. Gray, N.K. Sewankambo, D. Serwadda, X. Li, O. Laeyendecker, N. Kiwanuka, G. Kigozi, M. Kiddugavu, T. Lutalo, F. Nalugoda, F. Wabwire-Mangen, M.P. Meehan, T.C. Quinn, J. Infectious Diseases 191, 1403 (2005)CrossRefGoogle Scholar
  20. 20.
    D.P. Wilson, F. Jin, J. Jansson, I. Zablotska, A.E Grulich, AIDS 24, 2420 (2010)CrossRefGoogle Scholar
  21. 21.
    M. Xiridou, R. Geskus, J. de Wit, R. Coutinho, M. Kretzschmar, AIDS 17, 1029 (2003)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Rick Quax
    • 1
    Email author
  • David A. M. C. van de Vijver
    • 2
  • Dineke Frentz
    • 2
  • Peter M. A. Sloot
    • 1
    • 3
    • 4
  1. 1.Computational ScienceUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Virology, Erasmus Medical CentreErasmus UniversityRotterdamThe Netherlands
  3. 3.National Research University of Information Technologies, Mechanics and Optics (ITMO)Saint PetersburgRussia
  4. 4.Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations