The European Physical Journal Special Topics

, Volume 223, Issue 5, pp 959–977 | Cite as

The Armstrong experiment revisited

  • Elmar C. Fuchs
  • Adam D. Wexler
  • Astrid H. Paulitsch-Fuchs
  • Luewton L. F. Agostinho
  • Doekle Yntema
  • Jakob Woisetschläger
Review
Part of the following topical collections:
  1. Discussion and Debate: Water Complexity — More than a Myth?

Abstract

When a high-voltage direct-current is applied to two beakers filled with water or polar liquid dielectrica, a horizontal bridge forms between the two beakers. This experiment was first carried out by Lord Armstrong in 1893 and then forgotten until recently. Such bridges are stable by the action of electrohydrodynamic (EHD) forces caused by electric field gradients counteracting gravity. Due to these gradients a permanent pumping of liquid from one beaker into the other is observed. At macroscopic scale several of the properties of a horizontal water bridge can be explained by modern electrohydrodynamics, analyzing the motion of fluids in electric fields. Whereas on the molecular scale water can be described by quantum mechanics, there is a conceptual gap at mesoscopic scale which is bridged by a number of theories including quantum mechanical entanglement and coherent structures in water – theories that we discuss here. Much of the phenomenon is already understood, but even more can still be learned from it, since such “floating” liquid bridges resemble a small high voltage laboratory of their own: The physics of liquids in electric fields of some kV/cm can be studied, even long time experiments like neutron or light scattering are feasible since the bridge is in a steady-state equilibrium and can be kept stable for hours. It is also an electro-chemical reactor where compounds are transported through by the EHD flow, enabling the study of electrochemical reactions under potentials which are otherwise not easily accessible. Last but not least the bridge provides the experimental biologist with the opportunity to expose living organisms such as bacteria to electric fields without killing them, but with a significant influence on their behavior, and possibly, even on their genome.

References

  1. 1.
    W.G. Armstrong, Electrical phenomena The Newcastle Literary, Philosophical Society, The Electrical Engineer 10 (1893), p. 154Google Scholar
  2. 2.
    W. Uhlig, Personal communication, Laboratory of Inorganic Chemistry, ETH Hönggerberg – HCI, CH-8093 Zürich (2005)Google Scholar
  3. 3.
    E.C. Fuchs, J. Woisetschläger, K. Gatterer, E. Maier, R. Pecnik, G. Holler, H. Eisenkölbl, J. Phys. D: Appl. Phys. 40, 6112 (2007)ADSGoogle Scholar
  4. 4.
    E.C. Fuchs, K. Gatterer, G. Holler, J. Woisetschläger, J. Phys. D: Appl. Phys. 41, 185502 (2008)ADSGoogle Scholar
  5. 5.
    E.C. Fuchs, B. Bitschnau, J. Woisetschläger, E. Maier, B. Beuneu, J. Teixeira, J. Phys. D: Appl. Phys. 42, 065502 (2009)ADSGoogle Scholar
  6. 6.
    L.B. Skinner, C.J. Benmore, B. Shyama, J.K.R. Weber, J.B. Pariseb, PNAS 109, 16463 (2012)ADSGoogle Scholar
  7. 7.
    E.C. Fuchs, P. Baroni, B. Bitschnau, L. Noirez, J. Phys. D: Appl. Phys. 43, 105502:1 (2010)Google Scholar
  8. 8.
    J. Woisetschläger, K. Gatterer, E.C. Fuchs, Exp. Fluids 48, 121 (2010)Google Scholar
  9. 9.
    E.C. Fuchs, B. Bitschnau, S. Di Fonzo, A. Gessini, J. Woisetschläger, F. Bencivenga, J. Phys. Sc. Appl. 1, 135 (2011)Google Scholar
  10. 10.
    H. Nishiumi, F. Honda, Res. Let. Phys. Chem. 2009, ID 371650 (2009)Google Scholar
  11. 11.
    J. Mrázek, J.V. Burda, J. Chem. Phys. 125, 194518 (2006)ADSGoogle Scholar
  12. 12.
    W.L. Jorgensen, J. Tirado-Rives, PNAS Proc. Natl. Acad. Sci. 102, 6685 (2005)ADSGoogle Scholar
  13. 13.
    A. Castellanos, Electrohydrodynamics, International Centre for Mechanical Sciences, CISM Courses and Lectures No. 380 (Springer, Wien, New York, Ed., 1998)Google Scholar
  14. 14.
    E. Del Giudice, J. Phys. Conf. Ser. 67, 012006 (2006)Google Scholar
  15. 15.
    T. Head-Gordon, M.E. Johnson, PNAS Proc. Natl. Acad. Sci. 21, 7973 (2006)ADSGoogle Scholar
  16. 16.
    H.E. Stanley, S.V. Buldyrev, G. Franzese, N. Giovambattista, F.W. Starr, Phil. Trans. R. Soc. A 363, 509 (2005)ADSGoogle Scholar
  17. 17.
    C.A. Chatzidimitriou-Dreismann, T.A. Redah, R.M.F. Streffer, J. Mayers, Phys. Rev. Lett. 79, 2839 (1997)ADSGoogle Scholar
  18. 18.
    R. Arani, I. Bono, E. Del Giudice, G. Preparata, Int. J. Mod. Phys. B 9, 1813 (1995)ADSGoogle Scholar
  19. 19.
    G.H. Pollack, Cells, gels and the engine of life (Ebener & Sons, Seattle WA, 2001)Google Scholar
  20. 20.
    M. Eisenhut, X. Guo, A.H. Paulitsch-Fuchs, E.C. Fuchs, Cent. Eur. J. Chem. 9, 391 (2011)Google Scholar
  21. 21.
    E.C. Fuchs, L.L.F. Agostinho, M. Eisenhut, J. Woisetschläger, Proc. SPIE 7376, 7376E1 (2010)ADSGoogle Scholar
  22. 22.
    K. Ovchinnikova, G.H. Pollack, Langmuir 25, 542 (2009)Google Scholar
  23. 23.
    H.R. Corti, A. Colussi, Langmuir 25, 6587 (2009)Google Scholar
  24. 24.
    K. Ovchinnikova, G.H. Pollack, Langmuir 25, 11202 (2009)Google Scholar
  25. 25.
    H.R. Corti, A. Colussi, Langmuir 25, 11203 (2009)Google Scholar
  26. 26.
    A. Widom, J. Swain, J. Silverberg, S. Sivasubramanian, Y.N. Srivastava, Phys. Rev. E 80, 016301 (2009)ADSGoogle Scholar
  27. 27.
    F. Saija, F. Aliotta, M.E. Fontanella, M. Pochylski, G. Salvato, C. Vasi, R.C. Ponterio, J. Chem. Phys. 133, 081104 (2010)ADSGoogle Scholar
  28. 28.
    A.G. Marín, D. Lohse, Phys. Fluids 22, 122104 (2010)ADSGoogle Scholar
  29. 29.
    R.C. Ponterio, M. Pochylski, F. Aliotta, C. Vasi, M.E. Fontanella, J. Saija, J. Phys. D: Appl. Phys. 43, 175405:1 (2010)Google Scholar
  30. 30.
    A.A. Aerov, Why the Water Bridge does not collapse [arXiv:1012.1592v1] (2010)
  31. 31.
    R.J. Raco, Science 160, 311 (1968)ADSGoogle Scholar
  32. 32.
    H. Gonzalez, F.M.J. McCluskey, A. Castellanos, A. Barrero, J. Fluid Mech. 206, 545 (1989)ADSMATHGoogle Scholar
  33. 33.
    D.A. Saville, Ann. Rev. Fluid Mech. 29, 27 (1997)ADSMathSciNetGoogle Scholar
  34. 34.
    C.L. Burcham, D.A. Saville, J. Fluid Mech. 405, 37 (2000)ADSMATHGoogle Scholar
  35. 35.
    C.L. Burcham, D.A. Saville, J. Fluid Mech. 452, 163 (2002)ADSMATHGoogle Scholar
  36. 36.
    J.R. Melcher, E.P. Warren, J. Fluid Mech. 47, 127 (1971)ADSGoogle Scholar
  37. 37.
    A. Ramos, A. Castellanos, Phys. Fluids 6, 207 (1993)Google Scholar
  38. 38.
    H. Pellat, C. R. Acad. Sci. Paris 123, 691 (1896)Google Scholar
  39. 39.
    J. Woisetschläger, A.D. Wexler, G. Holler, M. Eisenhut, K. Gatterer, E.C. Fuchs, Exp. Fluids 52, 193 (2012)Google Scholar
  40. 40.
    E. Del Giudice, E.C. Fuchs, G. Vitiello, Water (Seattle) 2, 69 (2010)Google Scholar
  41. 41.
    E. Del Giudice, G. Vitiello, Water (Seattle) 2, 133 (2010)Google Scholar
  42. 42.
    E.C. Fuchs, L.L.F. Aghostinho, A. Wexler, R.M. Wagterveld, J. Tuinstra, J. Woisetschläger, J. Phys. D: Appl. Phys. 44, 025501 (2011)ADSGoogle Scholar
  43. 43.
    D. Eisenberg, W. Kauzman, The Structure and Properties of Water (Clarendon Press: Oxford, UK, 1969)Google Scholar
  44. 44.
    F. Franks, Water: A Comprehensive Treatise (Plenum: New York, NY, USA, 1972–1982)Google Scholar
  45. 45.
    P. Ball, Life’s Matrix: a Biography of Water (Farrar, Straus, and Giroux: New York, NY, USA, 1999)Google Scholar
  46. 46.
    P. Ball, Nature 452, 291 (2008)ADSGoogle Scholar
  47. 47.
    P. Ball, Chem. Rev. 108, 74 (2008)Google Scholar
  48. 48.
    M.F. Chaplin, Homeopath. Med. Panorama 11, 12 (2003)Google Scholar
  49. 49.
    M.F. Chaplin, Homeopath. Med. Panorama 11, 22 (2003)Google Scholar
  50. 50.
    C.H. Cho, S. Singh, G.W. Robinson, J. Chem. Phys. 107, 7979 (1997)ADSGoogle Scholar
  51. 51.
    P. Schuster, G. Zundel, C. Sandorfy, The Hydrogen Bond: Recent Developments in Theory and Experiments (North-Holland: Amsterdam, The Netherlands, 1976; Vols. I-III)Google Scholar
  52. 52.
    S.S. Xantheas, Chem. Phys. 258, 225 (2000)ADSGoogle Scholar
  53. 53.
    H.E. Stanley, Pramana J. Phys. 53, 53 (1999)ADSGoogle Scholar
  54. 54.
    A.E. Reed, F. Weinhold, L.A. Curtiss, D.J. Pochatko, J. Chem. Phys. 84, 5687 (1986)ADSGoogle Scholar
  55. 55.
    L. Ojamäe, K. Hermansson, J. Phys. Chem. 98, 4271 (1994)Google Scholar
  56. 56.
    J.M. Pedulla, F. Vila, K.D. Jordan, J. Chem. Phys. 105, 11091 (1996)ADSGoogle Scholar
  57. 57.
    R. Kumar, J.L. Skinner, J. Phys. Chem. 112, 8311 (2008)Google Scholar
  58. 58.
    A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)Google Scholar
  59. 59.
    R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)ADSGoogle Scholar
  60. 60.
    S. Izvekov, G.A. Voth, J. Chem. Phys. 116, 10372 (2002)ADSGoogle Scholar
  61. 61.
    H.-S. Lee, M.E. Tuckerman, J. Chem. Phys. 126, 164501 (2007)ADSGoogle Scholar
  62. 62.
    E. Schwegler, J.C. Grossman, F. Gygi, G. Galli, J. Chem. Phys. 121, 5400 (2004)ADSGoogle Scholar
  63. 63.
    Y.A. Mantz, B. Chen, G.J. Martyna, J. Phys. Chem. B 110, 3540 (2006)Google Scholar
  64. 64.
    T. Todorova, A.P. Seitsonen, J. Hutter, I.-F.W. Kuo, C.J. Mundy, J. Phys. Chem. B 110, 3685 (2006)Google Scholar
  65. 65.
    J. van de Vondele, F. Mohamed, M. Krack, J. Hutter, M. Sprik, M. Parrinello, J. Chem. Phys. 122, 14515 (2005)ADSGoogle Scholar
  66. 66.
    R. Bukowski, K. Szalewicz, G.C. Groenenboom, A. van der Avoird, Science 315, 1249 (2007)ADSGoogle Scholar
  67. 67.
    G.S. Fanourgakis, S.S. Xantheas, J. Phys. Chem. A 110, 4100 (2006)Google Scholar
  68. 68.
    M. Tuckerman, K. Laasonen, M. Sprik, M. Parrinello, J. Phys. Chem. 99, 5749 (1995)Google Scholar
  69. 69.
    T.S. Hofer, H.T. Tran, C.F. Schwenk, B.M. Rode, J. Comput. Chem. 25, 211 (2004)Google Scholar
  70. 70.
    R.A. Kuharski, P.J. Rossky, J. Chem. Phys. 82, 5164 (1985)ADSGoogle Scholar
  71. 71.
    J.A. Poulsen, G. Nyman, P.J. Rossky, J. Chem. Theory Comput. 2, 1482 (2006)Google Scholar
  72. 72.
    H.A. Stern, F. Rittner, B.J. Berne, R.A. Friesner, J. Chem. Phys. 115, 2237 (2001)ADSGoogle Scholar
  73. 73.
    F. Paesani, S. Iuchi, G.A. Voth, J. Chem. Phys. 127, 074506 (2007)ADSGoogle Scholar
  74. 74.
    L.H. de la Peña, P.G. Kusalik, J. Chem. Phys. 121, 5992 (2004)ADSGoogle Scholar
  75. 75.
    F. Paesani, G.A. Voth, J. Phys. Chem. B 113, 5702 (2009)Google Scholar
  76. 76.
    J. Teixeira, A. Luzar, Physics of Liquid Water. Structure and Dynamics. In: Hydration Processes in Biology: Theoretical and Experimental Approaches, NATO ASI series A, edited by M.C. Bellissent-Funel (IOS Press: Amsterdam, The Netherlands, 1999), p. 35Google Scholar
  77. 77.
    A.K. Soper, J. Phys. Condens. Matter 17, S3273 (2005)ADSGoogle Scholar
  78. 78.
    A.K. Soper, J. Phys. Condens. Matter 19, 335206:1 (2007)Google Scholar
  79. 79.
    A.K. Soper, ISRN Physical Chemistry 2013, ID 279463 (2013)Google Scholar
  80. 80.
    H.E. Stanley, S.V. Buldyrev, G. Franzese, N. Giovambattista, F.W. Starr, Phil. Trans. R. Soc. A 363, 509 (2005)ADSGoogle Scholar
  81. 81.
    H.E. Stanley, J. Teixeira, J. Chem. Phys. 73, 3404 (1980)ADSMathSciNetGoogle Scholar
  82. 82.
    H.E. Stanley, J. Teixeira, A. Geiger, R.L. Blumberg, Phyisca 106, 260 (1981)ADSGoogle Scholar
  83. 83.
    O. Mishima, H.E. Stanley, Nature 396, 329 (1998)ADSGoogle Scholar
  84. 84.
    M. Yamada, S. Mossa, H.E. Stanley, F. Sciortino, PRL 88, 195701 (2002)ADSGoogle Scholar
  85. 85.
    M. Leetmaa, M. Ljungberg, H. Ogasawara, M. Odelius, L.-Å. Näslund, A. Nilsson, L.G.M. Pettersson, J. Chem. Phys. 125, 244510:1 (2006)Google Scholar
  86. 86.
    M. Leetmaa, K.T. Wikfeldt, M.P. Ljungberg, M. Odelius, J. Swenson, A. Nilsson, L.G.M. Pettersson, J. Chem. Phys. 129, 084502:1 (2008)Google Scholar
  87. 87.
    F. Bruni, M.A. Ricci, A.K. Soper, “Obtaining distribution functions for water from diffraction data,” in Francesco Paolo Ricci: His Legacy and Future Perspectives of Neutron Scattering, edited by M. Nardone, M.A. Ricci, Vol. 76 (Società Italiana di Fisica, Bologna, Italy, 2001)Google Scholar
  88. 88.
    N.A. Chumaevskii, M.N. Rodnikova, J. Mol. Liquids 106, 167 (2003)Google Scholar
  89. 89.
    H.J. Bakker, J.L. Skinner, Chem. Rev. 110, 1498 (2010)Google Scholar
  90. 90.
    E.T.J. Nibbering, T. Elsaesser, Chem. Rev. 104, 1887 (2004)Google Scholar
  91. 91.
    P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L.-Å . Näslund, T.K. Hirsch, L. Ojamäe, P. Glatzel, L.G.M. Pettersson, A. Nilsson, Science 304, 995 (2004)ADSGoogle Scholar
  92. 92.
    M. Odelius, M. Cavalleri, A. Nilsson, L.G.M. Pettersson, Phys. Rev. B 73, 024205:1 (2006)ADSGoogle Scholar
  93. 93.
    J.D. Smith, C.D. Cappa, K.R. Wilson, B.M. Messer, R.C. Cohen, R.J. Saykally, Science 306, 851 (2004)ADSGoogle Scholar
  94. 94.
    T. Head-Gordon, M.E. Johnson, PNAS 103, 7973 (2006)ADSGoogle Scholar
  95. 95.
    J.S. Tse, D.M. Shaw, D.D. Klug, S. Patchkovskii, G. Vankó, G. Monaco, M. Krisch, PRL 100, 095502:1 (2008)ADSGoogle Scholar
  96. 96.
    E.C. Fuchs, MDPI Water 2, 381 (2010)Google Scholar
  97. 97.
    W. Gilbert, De magnete, magneticisque corporibus, et de magno magnete tellure; physiologia nova, plurimis argumentis, experimentis demonstrata (London, Peter Short, 1600)Google Scholar
  98. 98.
    L. Rayleigh, Phil. Mag. 14, 184 (1882)Google Scholar
  99. 99.
    J. Zeleny, J. Phys. Rev. 3, 69 (1914)ADSGoogle Scholar
  100. 100.
    J. Zeleny, J. Phys. Rev. 10, 1 (1917)ADSGoogle Scholar
  101. 101.
    G. Taylor, Proc. Royal Soc. London: A 313, 453 (1969)ADSGoogle Scholar
  102. 102.
    J.F. Wei, W.Q. Shui, F. Zhuo, Y. Lu, K.K. Chen, G.B. Xu, P.Y. Yang, Mass Spectrom. Rev. 21, 158 (2002)Google Scholar
  103. 103.
    K.B. Geerse, Ph.D. thesis, TU Delft, The Netherlands, 2003Google Scholar
  104. 104.
    A.G. Bailey, Electrostatic Spraying of Liquids (John Wiley & Sons INC., 1988)Google Scholar
  105. 105.
    J.M. Grace, J.C.M. Marijnissen, J. Aerosol Sci. 25, 1005 (1994)Google Scholar
  106. 106.
    J. Eggers, E. Villermaux, Rep. Prog. Phys. 71, 036601:1 (2008)Google Scholar
  107. 107.
    G.I. Taylor, Proc. R. Soc. London, Ser. A 280, 383 (1964)ADSMATHGoogle Scholar
  108. 108.
    J.F. de la Mora, Annu. Rev. Fluid Mech. 39, 217 (2007)ADSGoogle Scholar
  109. 109.
    R.T. Collins, J.J. Jones, M.T. Harris, O.A. Basaran, Nat. Phys. 4, 149 (2008)Google Scholar
  110. 110.
    G.I. Taylor, Proc. R. Soc. London, Ser. A 313, 453 (1969)ADSGoogle Scholar
  111. 111.
    M.M. Hohman, M. Shin, G. Rutledge, M.P. Brenner, Phys. Fluids 13, 2201 (2001)ADSMathSciNetGoogle Scholar
  112. 112.
    A.G. Riboux, I.G. Marín, A. Loscertales, J. Barrero, Fluid Mech. 671, 226 (2011)ADSMATHGoogle Scholar
  113. 113.
    J.C. Bird, W.D. Ristenpart, A. Belmonte, H.A. Stone, Phys. Rev. Lett. 103, 164502 (2009)ADSGoogle Scholar
  114. 114.
    L.L.F. Agostinho, E.C. Fuchs, S.J. Metz, C.U. Yurteri, J.C.M. Marijnissen, Phys. Rev. E 84, 026317 (2011)ADSGoogle Scholar
  115. 115.
    R.P.A. Hartman, D.J. Brunner, D.M.A. Camelot, J.C.M. Marijnissen, B. Scarlett, J. Aerosol Sci. 31, 65 (2000)Google Scholar
  116. 116.
    R.P.A. Hartman, D.J. Brunner, D.M.A. Camelot, J.C.M. Marijnissen, B. Scarlett, J. Aerosol Sci. 30, 823 (1999)Google Scholar
  117. 117.
    R.P.A. Hartman, J.-P. Borra, D.J. Brunner, J.C.M. Marijnissen, B. Scarlett, J. Electrostat. 47, 143 (1999)Google Scholar
  118. 118.
    M. Cloupeau, B. Prunet-Foch, J. Electrostatics 22, 135 (1989)Google Scholar
  119. 119.
    A. Gomez, K. Tang, Phys. Fluids 6, 404 (1994)ADSGoogle Scholar
  120. 120.
    D.-R. Chen, D.Y.H. Pui, S.L. Kaufman, J. Aerosol Sci. 26, 963 (1995)Google Scholar
  121. 121.
    A. Ramos, H. Gonzalez, A. Castellanos, Phys. Fluids 6, 3206 (1994)ADSMathSciNetGoogle Scholar
  122. 122.
    K. Morawetz, AIP Adv. 2, 022146 (2012)ADSGoogle Scholar
  123. 123.
    K. Morawetz, Phys. Rev. E 86, 026302 (2012)ADSGoogle Scholar
  124. 124.
    C. Saunders, C. Space Sci. Rev. 137, 335 (2008)ADSGoogle Scholar
  125. 125.
    A.M. Gañán-Calvo, J. Montanero, Phys. Rev. E. 79, 066305:1 (2009)ADSGoogle Scholar
  126. 126.
    E.C. Fuchs, A. Cherukupally, A.H. Paulitsch-Fuchs, L.L.F. Agostinho, A.D. Wexler, J. Woisetschläger, F.T. Freund, J. Phys. D: Appl. Phys. 45, 475401 (2012)ADSGoogle Scholar
  127. 127.
    D. Rai, A.D. Kulkarni, S.P. Gejji, R.K. Pathak, J. Chem. Phys. 128, 34310:1 (2008)Google Scholar
  128. 128.
    L. Onsager, J. Chem. Phys. 2, 599 (1934)ADSGoogle Scholar
  129. 129.
    G.B. Briere, Brit. J. Appl. Phys. 15, 413 (1964)ADSGoogle Scholar
  130. 130.
    S.I. Jeong, J. Seyed-Yagoobi, IEEE Trans. Ind. Appl. 39, 355 (2003)Google Scholar
  131. 131.
    A.J. Zhakin, Conduction phenomena in dielectric liquids, edited by A. Castellanos, Electrohydrodynamics, International Centre for Mechanical Sciences, CISM Courses and Lectures No. 380 (Springer, Vienna, 1998)Google Scholar
  132. 132.
    S.I. Jeong, J. Seyed-Yagoobi, IEEE Trans. Dielect. Elect. Ins. 11, 899 (2004)Google Scholar
  133. 133.
    E. Del Giudice, P.R. Spinetti, A. Tedeschi, MDPI Water 2, 566 (2010)Google Scholar
  134. 134.
    E. Del Giudice, G. Vitiello, Water (Seattle) 2, 133 (2011)Google Scholar
  135. 135.
    L. Piatkowski, A.D. Wexler, E.C. Fuchs, H. Schoenmaker, H.J. Bakker, PCCP 14, 6160 (2012)ADSGoogle Scholar
  136. 136.
    S. Woutersen, U. Emmerichs, H.-K. Nienhuys, H.J. Bakker, Phys. Rev. Lett. 81, 1106 (1998)ADSGoogle Scholar
  137. 137.
    G.H. Pollack, University of Washington, Department of Bioengineering University of Washington, Box 355061, William H. Foege Building, Room N210A (private communication)Google Scholar
  138. 138.
    H. Hülsheger, J. Potel, E.G. Niemann, Radiat. Environ. Biophys. 22, 149 (1983)Google Scholar
  139. 139.
    H. Andersson, A. van den Berg, Sensors and Actuators B: Chemical. 92, 315 (2003)Google Scholar
  140. 140.
    C. Yi, C.W. Li, S. Ji, M. Yang, Analytica Chimica Acta. 560, 1 (2006)Google Scholar
  141. 141.
    H. Tsutsui, C.M. Ho, Mech. Res. Comm. 36, 92 (2009)MATHGoogle Scholar
  142. 142.
    D.R. Gossett, W.M. Weaver, A.J. Mach, C. Hur, H.T. Kwong Tse, W. Lee, H. Amini, D. Di Carlo, Anal. Bioanal. Chem. 397, 3249 (2010)Google Scholar
  143. 143.
    N.M. Calvin, P.C. Hanawalt, J. Bacteriol. 170, 2796 (1988)Google Scholar
  144. 144.
    C. Chen, S.W. Smye, M.P. Robinson, J.A. Evans, Med. Biol. Eng. Comp. 44, 5 (1988)Google Scholar
  145. 145.
    M.B. Fox, D.C. Esveld, A. Valero, R. Luttge, H.C. Mastwijk, P.V. Bartels, A. van den Berg, R.M. Boom, Anal. Bioanal. Chem. 385, 474 (2006)Google Scholar
  146. 146.
    W. Krassowska Neu, J.C. Neu, Cardiac Bioelectric Therapy 2, 133 (2009)Google Scholar
  147. 147.
    P.T. Johnstone, P.S. Bodger, IPENZ Trans. 24, 30 (1997)Google Scholar
  148. 148.
    J. Mosqueda-Melgar, P. Elez-Martínez, R.M. Raybaudi-Massilia, O. Martín-Belloso, Crit. Rev. Food Sc. Nutrition 48, 747 (2008)Google Scholar
  149. 149.
    C. Gusbeth, W. Frey, H. Volkmann, T. Schwartz, H. Bluhm, Chemosphere. 75, 228 (2009)Google Scholar
  150. 150.
    C.Y. Hwang, S. Jung, Y.S. Hwang, B.C. Cho, Water Air Soil Pollut. 213, 161 (2010)Google Scholar
  151. 151.
    J. Engebrecht, K. Nealson, M. Silverman, Cell. 32, 773 (1983)Google Scholar
  152. 152.
    A.H. Paulitsch-Fuchs, E.C. Fuchs, A.D. Wexler, F.T. Freund, L.J. Rothschild, A. Cherukupally, G.J.W. Euverink, Phys. Biol. 9, 026006 (2012)ADSGoogle Scholar
  153. 153.
    Y. Katsir, L. Miller, Y. Aharonov, E. Ben-Jacob, J. Amer. Electrochem. Society 154, D249 (2007)Google Scholar
  154. 154.
    E. Ben Jacob, Y. Aharonov, Y. Shapira, Biofilms 1, 239 (2005)Google Scholar
  155. 155.
    L. Rey, Physica A 323, 67 (2003)ADSMathSciNetGoogle Scholar
  156. 156.
    L. Rey, Homeopathy 96, 170 (2007)Google Scholar
  157. 157.
    F. Freund, H. Wengeler, Ber. Bunsenges. Phys. Chem. 84, 866 (1980)Google Scholar
  158. 158.
    R. Martens, H. Wengeler, F. Freund, Ber. Bunsenges. Phys. Chem. 84, 873 (1980)Google Scholar
  159. 159.
    F. Freund, H. Wengeler, J. Phys. Chim. France 77, 837 (1980)Google Scholar
  160. 160.
    F. Freund, J.C. Nièpce, Adv. Solid State Chem. 1, 26 (1989)Google Scholar
  161. 161.
    A. Springer, V. Hagen, D.A. Cherepanov, Y.N. Antonenko, P. Pohl, Proc. Natl Acad. Sci. 108, 14461 (2011)ADSGoogle Scholar
  162. 162.
    A.A. Pietropaolo, R. Senesi, C. Andreani, A. Botti, M.A. Ricci, F. Bruni, Phys. Rev. Lett. 100, 127802 (2008)ADSGoogle Scholar
  163. 163.
    A. Soper, Phys. Rev. Lett. 103, 069801 (2009)ADSGoogle Scholar
  164. 164.
    M. Freda, A. Piluso, A. Santucci, P. Sassi, Appl. Spectrosc. 59, 1155 (2005)ADSGoogle Scholar
  165. 165.
    D. Kraemer, M.L. Cowan, A. Paarmann, N. Huse, E.T.J. Nibberling, T. Elsaesser, R.J. Dwayne Miller, Proc. Natl Acad. Sci. 105, 437 (2008)ADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Elmar C. Fuchs
    • 1
  • Adam D. Wexler
    • 1
  • Astrid H. Paulitsch-Fuchs
    • 1
  • Luewton L. F. Agostinho
    • 1
  • Doekle Yntema
    • 1
  • Jakob Woisetschläger
    • 1
    • 2
  1. 1.Wetsus — Centre of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands
  2. 2.Experimental Turbomachinery Research and Optical Measurement Group, Institute for Thermal Turbomachinery and Machine DynamicsGraz University of TechnologyGrazAustria

Personalised recommendations