Advertisement

Nonequilibrium dynamics of ultracold Fermi superfluids

  • Analabha Roy
Review Complex Fluids
  • 162 Downloads

Abstract

The aim of this mini review is to survey the literature on the study of nonequilibrium dynamics of Fermi superfluids in the BCS and BEC limits, both in the single channel and dual channel cases. The focus is on mean field approaches to the dynamics, with specific attention drawn to the dynamics of the Ginzburg-Landau order parameters of the Fermi and composite Bose fields, as well as on the microscopic dynamics of the quantum degrees of freedom. The two approaches are valid approximations in two different time scales of the ensuing dynamics. The system is presumed to evolve during and/or after a quantum quench in the parameter space. The quench can either be an impulse quench with virtually instantaneous variation, or a periodic variation between two values. The literature for the order parameter dynamics, described by the time-dependent Ginzburg-Landau equations, is reviewed, and the works of the author in this area highlighted. The mixed phase regime in the dual channel case is also considered, and the dual order parameter dynamics of Fermi-Bose mixtures reviewed. Finally, the nonequilibrium dynamics of the microscopic degrees of freedom for the superfluid is reviewed for the self-consistent and non self-consistent cases. The dynamics of the former can be described by the Bogoliubov de-Gennes equations with the equilibrium BCS gap equation continued in time and self -consistently coupled to the BdG dynamics. The latter is a reduced BCS problem and can be mapped onto the dynamics of Ising and Kitaev models. This article reviews the dynamics of both impulse quenches in the Feshbach detuning, as well as periodic quenches in the chemical potential, and highlights the author’s contributions in this area of research.

Keywords

Soliton European Physical Journal Special Topic Feshbach Resonance Ultracold Atom Nonequilibrium Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.L. Raab, M. Prentiss, A. Cable, S. Chu, D.E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Weiman, E.A. Cornell, Science 269, 198 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    C. Monroe, W. Swann, H. Robinson, C. Wieman, Phys. Rev. Lett. 65, 1571 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    A.M. Dudarev, M.G. Raizen, Q. Niu, Phys. Rev. Lett. 98, 063001 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    A. Xuereb, P. Horak, T. Freegarde, Phys. Rev. A 80, 013836 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    F. Schreck, L. Khaykovich, K.L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles, C. Salomon, Phys. Rev. Lett. 87, 080403 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    A.K. Truscott, K.E. Strecker, W.I. McAlexander, G.B. Partridge, R.G. Hulet, Science 291, 2570 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    C.A. Regal, M. Greiner, S. Giorgini, M. Holland, D.S. Jin, Phys. Rev. Lett. 95, 250404 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    M.W. Zwierlein, A. Schirotzek, C.H. Schunck, W. Ketterle, Science 311, 492 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    J.T. Stewart, J.P. Gaebler, D.S. Jin, Nature 454, 744 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    A. Schirotzek, Y. Shin, C.H. Schunck, W. Ketterle, Phys. Rev. Lett. 101, 140403 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    A.J. Leggett, Rev. Mod. Phys. 73, 307 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    A.J. Leggett, Modern Trends in the Theory of Condensed Matter (Springer-Verlag, Berlin, 1980)Google Scholar
  18. 18.
    P. Nozires, S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985)ADSCrossRefGoogle Scholar
  19. 19.
    C.A.R. Sa de Melo, M. Randeria, J.R. Engelbrecht, Phys. Rev. Lett. 71, 3202 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    M. Randeria, Bose-Einstein Condensation (Cambridge University Press, Cambridge, 1994)Google Scholar
  21. 21.
    H. Feshbach, Ann. Phys. 5, 357 (1958)MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    C.J. Pethick, H. Smith, Bose Einstein Condensation in Dilute Gases (Cambridge Univ. Press, Cambridge, 2002)Google Scholar
  23. 23.
    See Ref [36], the refs thereinGoogle Scholar
  24. 24.
    H.B. Huang, C.X. Yang, L.J. Sun, L. Chen, J. Li, Phys. Lett. A 372, 5748 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    E. Abrahams, T. Tsuneto, Phys. Rev. 152, 416 (1966)ADSCrossRefGoogle Scholar
  26. 26.
    R.A. Barankov, L.S. Levitov, B.Z. Spivak, Phys. Rev. Lett. 93, 160401 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    A.V. Andreev, V. Gurarie, L. Radzihovsky, Phys. Rev. Lett. 93, 130402 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    L.P. Gorkov, G.M. Eliashberg, Sov. Phys. JETP 27, 328 (1968)ADSGoogle Scholar
  29. 29.
    A.F. Volkov, Sh.M. Kogan, Sov. Phys. JETP 38, 1018 (1974), available online at http://jetp.ac.ru/cgi-bin/e/index/e/38/5/p1018?a=list
  30. 30.
    A.G. Aronov, V.L. Gurevich, Sov. Phys. Solid State 16, 1722 (1974)Google Scholar
  31. 31.
    A.G. Aronov, V.L. Gurevich, Sov. Phys. JETP 38, 550 (1974)ADSGoogle Scholar
  32. 32.
    A.I. Larkin, Yu.N. Ovchinnikov, Sov. Phys. JETP 46, 155 (1077)ADSGoogle Scholar
  33. 33.
    U. Schollwöck, Ann. Phys 326, 96 (2011)ADSzbMATHCrossRefGoogle Scholar
  34. 34.
    M. Tezuka, M. Ueda, Phys. Rev. Lett. 100, 110403 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    A. Roy, Eur. Phys. J. Plus 127, 34 (2012)CrossRefGoogle Scholar
  37. 37.
    A. Das, Phys. Rev. B 82, 172402 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    A. Roy, R. Dasgupta, S. Modak, A. Das, K. Sengupta, J. Phys: Condens. Matter 25, 205703 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    K. Huang, Z.Q. Yu, L. Yin, Phys. Rev. A 79, 053602 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    M. Holland, S.J.J.M.F. Kokkelmans, M.L. Chiofalo, R. Walser, Phys. Rev. Lett. 87, 120406 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    E. Timmermans, P. Tommasini, M. Hussein, A. Kerman, Phys. Rep. 315, 199 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    E. Timmermans, K. Furuya, P.W. Milonni, A. Kerman, Phys. Lett. A 285, 228 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    M. Greiner, O. Mandel, T.W. Hansch, I. Bloch, Nature 419, 51 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    P. Coleman, Introduction to Many-Body Physics (available online at http://www.physics.rutgers.edu/ coleman/, Rutgers University, 2012), p. 415-421: 472–478
  45. 45.
    J. Hubbard, Phys. Rev. Lett. 3, 77 (1959)ADSCrossRefGoogle Scholar
  46. 46.
    R.L. Stratonovich, Soviet Physics Doklady 2, 416 (1058)ADSGoogle Scholar
  47. 47.
    M. Machida, T. Koyama. Phys. Rev. A 74, 033603 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    For a detailed treatment of the Ginzburg-Landau dynamics in the single channel BCS case using Keldysh theory, see J. Rammer, Quantum Field Theory of Non-equilibrium States (Cambridge University Press, Cambridge, 2007) Chapter 8, references thereinGoogle Scholar
  49. 49.
    L.M. Hocking, K. Stewartson, Proc. R. Soc. Lond. A 326, 289 (1972)MathSciNetADSzbMATHCrossRefGoogle Scholar
  50. 50.
    C. Elphick, G. Iooss, E. Tirapegui, Phys. Lett. A 120, 459 (1987)MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    I.S. Aranson, L. Kramer, Rev. Mod. Phys. 74, 99 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  52. 52.
    M. Ueda, Fundamentals, New Frontiers of Bose-Einstein Condensation (World Scientific, Singapore, 2010)Google Scholar
  53. 53.
    G.H. Derrick, J. Math. Phys. 5, 1252 (1964)MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    F. Cooper, A. Khare, N.R. Quintero, F.G. Mertens, A. Saxena, Phys. Rev. E 85, 046607 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    N.G. Vakhitov, A.A. Kolokolov, Radiophys., Quant. Elec. 16, 783 (1973)Google Scholar
  56. 56.
    S. Chen, B. Guo, J. Dyna. Sys. Diff. Equ. 2, 120 (2009)MathSciNetGoogle Scholar
  57. 57.
    S. Chen, B. Guo, J. Math. Phys. 51, 033507 (2010)MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    C. Guo, S. Fang, X. Wang, Information Computing, Applications: Communications in Computer, Information Science, Vol. 106 (Springer, Berlin Heidelberg, 2010), p. 111Google Scholar
  59. 59.
    S.H. Strogatz, Nonlinear Dynamics, Chaos (Perseus Books, Reading Massachusetts, 1994), p. 24Google Scholar
  60. 60.
    G , Jinlan, F. Shaomei, W. Xia, G. Changhong, Comm. Nonlinear Sci., Num. Sim. 18, 124 (2013) (to be published)MathSciNetADSzbMATHCrossRefGoogle Scholar
  61. 61.
    M. Tinkham, Introduction to Superconductivity (McGraw Hill, New York, 1996)Google Scholar
  62. 62.
    P.W. Anderson, Phys. Rev. 112, 1900 (1958)MathSciNetADSCrossRefGoogle Scholar
  63. 63.
    L. Jiang, T. Kitagawa, J. Alicea, A.R. Akhmerov, D. Pekker, G. Refael, J.I. Cirac, E. Demler, M.D. Lukin, P. Zoller, Phys. Rev. Lett. 106, 220402 (2011)ADSCrossRefGoogle Scholar
  64. 64.
    M.H. Szymanska, B.D. Simons, K. Burnett, Phys. Rev. Lett. 94, 170402 (2005)ADSCrossRefGoogle Scholar
  65. 65.
    D. Pekker, R. Sensarma, E. Demler [arXiv:0906.0931] (unpublished)
  66. 66.
    M. Babadi, D. Pekker, R. Sensarma, A. Georges, E. Demler [arXiv:0908.3483] (unpublished)
  67. 67.
    K.J. Challis, R.J. Ballagh, C.W. Gardiner, Phys. Rev. Lett. 98, 093002 (2007)ADSCrossRefGoogle Scholar
  68. 68.
    M. Antezza, F. Dalfovo, L.P. Pitaevskii, S. Stringari, Phys. Rev. A 76, 043610 (2007)ADSCrossRefGoogle Scholar
  69. 69.
    R.G. Scott, F. Dalfovo, L.P. Pitaevskii, S. Stringari, Phys. Rev. Lett. 106, 185301 (2011)ADSCrossRefGoogle Scholar
  70. 70.
    R.G. Scott, F. Dalfovo, L.P. Pitaevskii, S. Stringari, O. Fialko, R. Liao, J. Brand, New J. Phys. 14, 023044 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    R. Liao, J. Brand, Phys. Rev. A 83, 041604(R) (2011)ADSGoogle Scholar
  72. 72.
    C. Wittig, J. Phys. Chem. B 109, 8428 (2005)CrossRefGoogle Scholar
  73. 73.
    S.N. Shevchenko, S. Ashhab, F. Nori, Phys. Rep. 492, 1 (2010)ADSCrossRefGoogle Scholar
  74. 74.
    A. Garg, B.S. Shastry, K.B. Dave, P. Phillips [arXiv:1104.2652] (unpublished)
  75. 75.
    S. Katsura, Phys. Rev. 127, 1508 (1962)ADSzbMATHCrossRefGoogle Scholar
  76. 76.
    V. Mukherjee, A. Dutta, J. Stat. Mech., P05005 (2009)Google Scholar
  77. 77.
    A. Dutta, U. Divakaran, D. Sen, B.K. Chakrabarti, T.F. Rosenbaum, G. Aeppli, [arXiv:1012:0653] (unpublished)
  78. 78.
    J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005)ADSCrossRefGoogle Scholar
  79. 79.
    J. Dziarmaga, Phys. Rev. B 74, 064416 (2006)ADSCrossRefGoogle Scholar
  80. 80.
    R.W. Cherng, L.S. Levitov, Phys. Rev. A 73, 043614 (2006)ADSCrossRefGoogle Scholar
  81. 81.
    D. Sen, K. Sengupta, S. Mondal, Phys. Rev. Lett. 101, 016806 (2008)ADSCrossRefGoogle Scholar
  82. 82.
    H.D. Chen, Z. Nussinov, J. Phys. A: Math. Theor. 41, 075001 (2008)MathSciNetADSCrossRefGoogle Scholar
  83. 83.
    K. Sengupta, D. Sen, S. Mondal, Phys. Rev. Lett. 100, 077204 (2008)ADSCrossRefGoogle Scholar
  84. 84.
    S. Mondal, D. Sen, K. Sengupta, Phys. Rev. B 78, 045101 (2008)ADSCrossRefGoogle Scholar
  85. 85.
    V.I. Yukalov, Phys. Rev. A 79, 052117 (2009)ADSCrossRefGoogle Scholar
  86. 86.
    L. Landau, Phys. Soviet Union 2, 46 (1932)Google Scholar
  87. 87.
    C. Zener, Proc. R. Soc. London Ser. A 137, 696 (1932)ADSCrossRefGoogle Scholar
  88. 88.
    S. Ashhab, J.R. Johansson, A.M. Zagoskin, F. Nori, Phys. Rev. A 75, 063414 (2007)ADSCrossRefGoogle Scholar
  89. 89.
    A. Russomanno, A. Silva, G.E. Santoro [arXiv:1204.5084] (unpublished)
  90. 90.
    For a current review, see [77], the references threinGoogle Scholar
  91. 91.
    B. Damski, Phys. Rev. Lett. 95, 035701 (2005)ADSCrossRefGoogle Scholar
  92. 92.
    J. Dziarmaga, Adv. Phys. 59, 1063 (2010)ADSCrossRefGoogle Scholar
  93. 93.
    Y. Kayanuma, Phys. Rev. A 50, 843 (1994)ADSCrossRefGoogle Scholar
  94. 94.
    W.D. Oliver, Ya. Yu, J.C. Lee, K.K. Berggren, L.S. Levitov, T.P. Orlando, Science 310, 1653 (2005)ADSCrossRefGoogle Scholar
  95. 95.
    J.H. Shirley, Phys. Rev. 138, B979 (1965)ADSCrossRefGoogle Scholar
  96. 96.
    F. Großmann, P. Hänggi, Europhys. Lett. 18, 571 (1992)ADSCrossRefGoogle Scholar
  97. 97.
    J.M. Gomez Llorente, J. Plata, Phys. Rev. A 45, R6954 (1992)ADSGoogle Scholar
  98. 98.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  99. 99.
    M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A.S. De, U. Sen, Adv. Phys. 56, 243 (2006)ADSCrossRefGoogle Scholar
  100. 100.
    For a detailed account, see S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008)ADSCrossRefGoogle Scholar
  101. 101.
    Also see A. Bulgac, M. McNeil Forbes, P. Magierski, Lect. Not. Phys. 836, 305 (2012)ADSCrossRefGoogle Scholar
  102. 102.
    S.L. Cornish, N.R. Claussen, J.L. Roberts, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 85, 1795 (2000)ADSCrossRefGoogle Scholar
  103. 103.
    E.A. Donley, N.R. Claussen, S.T. Thompson, C.E. Wieman, Nature 417, 529 (2002)ADSCrossRefGoogle Scholar
  104. 104.
    S.J.J.M.F. Kokkelmans, M.J. Holland, Phys. Rev. Lett. 89, 180401 (2002)ADSCrossRefGoogle Scholar
  105. 105.
    M.L. Olsen, J.D. Perreault, T.D. Cumby, D.S. Jin, Phys. Rev. A 80, 030701(R) (2009)ADSCrossRefGoogle Scholar
  106. 106.
    T.C. Li, H. Kelkar, D. Medellin, M.G. Raizen, Opt. Exp. 16, 5465 (2008)ADSCrossRefGoogle Scholar
  107. 107.
    K.M. O’Hara, S.L. Hemmer, M.E. Gehm, S.R. Granade, J.E. Thomas, Science 298, 2179 (2002)ADSCrossRefGoogle Scholar
  108. 108.
    M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. Hecker Denschlag, R. Grimm, Phys. Rev. Lett. 92, 203201 (2004)ADSCrossRefGoogle Scholar
  109. 109.
    M.W. Zwierlein, J.R. Abo-Shaeer, A. Schirotzek, C.H. Schunck, W. Ketterle, Nature 435, 1047 (2005)ADSCrossRefGoogle Scholar
  110. 110.
    G. Rempe, H. Walther, N. Klein, Phys. Rev. Lett. 58, 353 (1987)ADSCrossRefGoogle Scholar
  111. 111.
    M. Greiner, O. Mandel, T.W. Hänsch, I. Bloch, Nature 419, 51 (2002)ADSCrossRefGoogle Scholar
  112. 112.
    See, for instance, C.C. Chien, B. Damski, Phys. Rev. A 82, 063616 (2010)ADSCrossRefGoogle Scholar
  113. 113.
    B.M. Breid, J.R. Anglin, Phil. Trans. R. Soc. A 366, 2813 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  114. 114.
    E.A. Yuzbashyan, V.B. Kuznetsov, B.L. Altshuler, Phys. Rev. B 72, 144524 (2005)ADSCrossRefGoogle Scholar
  115. 115.
    T. Schumm, P. Krüger, S. Hofferberth, I. Lesanovsky, S. Wildermuth, S. Groth, I. Bar-Joseph, L.M. Andersson, J. Schmiedmayer, Quantum Inf. Proc. 5, 537 (2006)zbMATHCrossRefGoogle Scholar
  116. 116.
    T. Schumm, S. Hofferberth, L.M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, P. Krüger, Nature Phys. 1, 57 (2005)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.TCMP divisionSaha Institute of Nuclear PhysicsBidhannagarIndia

Personalised recommendations