Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 5, pp 1271–1275 | Cite as

Time resolved ultrafast ARPES for the study of topological insulators: The case of Bi2Te3

  • M. Hajlaoui
  • E. Papalazarou
  • J. Mauchain
  • Z. Jiang
  • I. Miotkowski
  • Y. P. Chen
  • A. Taleb-Ibrahimi
  • L. Perfetti
  • M. Marsi
Regular Article Semi-metals and the Topological Insulator

Abstract

We discuss the application of time-resolved ultrafast angle resolved photoelectron spectroscopy to the study of photoexcited topological insulators. Measurements performed on the prototype material Bi2Te3 clearly show that all the main processes involved in the ultrafast surface carrier dynamics of topological insulators can be clearly observed and quantitatively analyzed. The comparison with other experimental results shows that the relative position of surface and bulk conduction bands with respect to the system Fermi level play an essential role in the recombination processes following ultrafast optical excitation.

Keywords

European Physical Journal Special Topic Topological Insulator Dirac Cone Surface Band Interband Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    HasanM.Z., KaneC.L., Rev. Mod. Phys. 82, 3045 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    H. Zhang, et al., Nat. Phys. 5, 438 (2009)CrossRefGoogle Scholar
  4. 4.
    D. Hsieh, et al., Nature 452, 970 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Y.L. Chen, et al., Science 325, 178 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    F. Schmitt, et al., Science 321, 1649 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    T. Rohwer, et al., Nature 471, 490 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    J.C. Petersen, et al., Phys. Rev. Lett. 107, 177402 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    L. Perfetti, et al., Phys. Rev. Lett. 97, 067402 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    S. Hellmann, et al., Nature Comm. 3, 1069 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Ishida, et al., Scientific Reports 1, 64 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    C.L. Cortes, et al., Phys. Rev. Lett. 107, 097002 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    C.L. Smallwood, et al., Science 336, 6085 (2012)CrossRefGoogle Scholar
  14. 14.
    A. Damascelli, et al., Rev. Mod. Phys. 75, 473 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    J. Sobota, et al., Phys. Rev. Lett. 108, 117403 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Y. H. Wang, et al., Phys. Rev. Lett. 109, 127401 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    A. Crepaldi, et al., Phys. Rev. B 86, 205133 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    M. Hajlaoui, et al., Nano Lett. 12, 3532 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    M. Marsi, et al., J. Appl. Phys. 71, 2048 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    J. Faure, et al., Rev. Sci. Instrum. 83, 043109 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    E. Papalazarou, et al., Phys. Rev. Lett. 108, 256808 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    F. Rodolakis, et al., Phys. Rev. Lett. 102, 066805 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    M. Marsi, et al., Phys. Rev. B 47, 6455 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    O. Yazvey, et al., Phys. Rev. Lett. 105, 266806 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    N. Halas, J. Bokor, Phys. Rev. Lett. 62, 1679 (1989)ADSCrossRefGoogle Scholar
  26. 26.
    J. Bokor, Science 246, 1130 (1989)ADSCrossRefGoogle Scholar
  27. 27.
    M. Marsi, et al., J. Electron Spectrosc. Relat. Phenom. 94, 149 (1998)CrossRefGoogle Scholar
  28. 28.
    L. Toben, et al., Phys. Rev. Lett. 94, 067601 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    S.R. Park, et al., Phys. Rev. B 81, 041405 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Z.-H. Pan, et al., Phys. Rev. Lett. 108, 187001 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    C. Jozwiak, et al., Rev. Sci. Instrum. 81, 053904 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • M. Hajlaoui
    • 1
  • E. Papalazarou
    • 1
  • J. Mauchain
    • 1
  • Z. Jiang
    • 2
  • I. Miotkowski
    • 3
  • Y. P. Chen
    • 3
  • A. Taleb-Ibrahimi
    • 4
  • L. Perfetti
    • 5
  • M. Marsi
    • 1
  1. 1.Laboratoire de Physique des Solides, CNRS-UMR 8502Université Paris-SudOrsayFrance
  2. 2.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Department of PhysicsPurdue UniversityWest LafayetteUSA
  4. 4.Synchrotron SOLEILGif-sur-YvetteFrance
  5. 5.Laboratoire des Solides IrradiésEcole Polytechnique-CEA/DSM-CNRS UMR 7642PalaiseauFrance

Personalised recommendations