Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 5, pp 1257–1262 | Cite as

Interlayer tunneling spectroscopy of graphite at high magnetic field oriented parallel to the layers

  • Y. I. Latyshev
  • A. P. Orlov
  • P. Monceau
  • D. Vignolles
  • S. S. Pershoguba
  • V. M. Yakovenko
Regular Article Semi-metals and the Topological Insulator

Abstract

Interlayer tunneling in graphite mesa-type structures is studied at a strong in-plane magnetic field H up to 55 T and low temperature T = 1.4 K. The tunneling spectrum dI/dV vs. V has a pronounced peak at a finite voltage V 0. The peak position V 0 increases linearly with H. To explain the experiment, we develop a theoretical model of graphite in the crossed electric E and magnetic H fields. When the fields satisfy the resonant condition E = vH, where V is the velocity of the two-dimensional Dirac electrons in graphene, the wave functions delocalize and give rise to the peak in the tunneling spectrum observed in the experiment.

Keywords

Wave Function European Physical Journal Special Topic Graphene Layer Resonant Condition Topological Insulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.M. Krasnov, A.E. Kovalev, A. Yurgens, D. Winkler, Phys. Rev. Lett. 86, 2657 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Yu.I. Latyshev, P. Monceau, S. Brazovskii, A.P. Orlov, T. Fournier, Phys. Rev. Lett. 95, 266402 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    A.P. Orlov, Yu.I. Latyshev, D. Vignolles, P. Monceau, JETP Lett. 87, 433 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Yu.I. Latyshev, A.P. Orlov, D. Vignolles, W. Escoffier, P. Monceau, Physica B 407, 1885 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    S.K. Lyo, E. Bielejec, J.A. Seamons, J.L. Reno, M.P. Lilly, Yun-pil Shim, Physica E 34, 425 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    E. Bielejec, J.A. Seamons, J.L. Reno, S.K. Lyo, M.P. Lilly, Physica E 34, 433 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    L. Britnell, et al., Nano Lett. 12, 1707 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    S.S. Pershoguba, V.M. Yakovenko, Phys. Rev. B 82, 205408 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    A.A. Zyuzin, M.D. Hook, A.A. Burkov, Phys. Rev. B 83, 245428 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    S.S. Pershoguba, V.M. Yakovenko, Phys. Rev. B 86, 165404 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    H.B. Zhang, H.L. Yu, D.H. Bao, S.W. Li, C.X. Wang, G.W. Yang, Adv. Mater. 24, 132 (2012)CrossRefGoogle Scholar
  12. 12.
    A.P. Orlov, Yu.I. Latyshev, A.M. Smolovich, P. Monceau, JETP Letters 84, 89 (2006)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Y. I. Latyshev
    • 1
  • A. P. Orlov
    • 1
  • P. Monceau
    • 2
  • D. Vignolles
    • 3
  • S. S. Pershoguba
    • 4
  • V. M. Yakovenko
    • 4
  1. 1.Kotelnikov Institute of Radio Engineering and Electronics of RASMoscowRussia
  2. 2.Institut NéelCNRSGrenobleFrance
  3. 3.Laboratoire National des Champs Magnétiques Intenses–ToulouseCNRSToulouseFrance
  4. 4.Condensed Matter Theory Center, Department of PhysicsUniversity of MarylandMarylandUSA

Personalised recommendations