The European Physical Journal Special Topics

, Volume 222, Issue 5, pp 1217–1221 | Cite as

On field effect studies and superconductor-insulator transition in high-Tc cuprates

  • G. Dubuis
  • A. T. Bollinger
  • D. Pavuna
  • I. Božović
Review Superconductors


We summarize previous field effect studies in high-T c cuprates and then discuss our method to smoothly tune the carrier concentration of a cuprate film over a wide range using an applied electric field. We synthesized epitaxial one-unit-cell thick films of La2−x Sr x CuO4 and from them fabricated electric double layer transistor devices utilizing various gate electrolytes. We were able to vary the carrier density by about 0.08 carriers per Cu atom, with the resulting change in T c of 30 K. The superconductor-insulator transition occurred at the critical resistance very close to the quantum resistance for pairs, R Q = h/(2e)2 = 6.5 kΩ. This is suggestive of a quantum phase transition, possibly driven by quantum phase fluctuations, between a “Bose insulator” and a high-T c superconductor state.


European Physical Journal Special Topic Carrier Density Gate Voltage Quantum Phase Transition Gate Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.H. Ahn, J.-M. Triscone, J. Mannhart, Nature 424, 1015 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    S.A. Brazovskii, V.M. Yakovenko, Phys. Lett. A 132, 290 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    A. Cassinese, G.M. De Luca, A. Prigiobbo, M. Salluzzo, R. Vaglio, Appl. Phys. Lett. 84, 3933 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    J. Mannhart, J.G. Bednorz, K.A. Mueller, D.G. Schlom, Z. Phys. B Cond. Matter 83, 307 (1991)CrossRefGoogle Scholar
  5. 5.
    G.Yu. Logvenov, A. Sawa, C.W. Schneider, J. Mannhart, Appl. Phys. Lett. 83, 3528 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    G.Yu. Logvenov, C.W. Schneider, J. Mannhart, Yu. S. Barash, Appl. Phys. Lett. 86, 202505 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    D. Matthey, N. Reyren, J.-M. Triscone, T. Schneider, Phys. Rev. Lett. 98, 057002 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    A.D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, J.-M. Triscone, Nature 456, 624 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    C.H. Ahn, S. Gariglio, P. Paruch, T. Tybell, L. Antognazza, J.-M. Triscone, Science 284, 1152 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    S. Gariglio, C.H. Ahn, D. Matthey, J.-M. Triscone, Phys. Rev. Lett. 88, 067002 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    S.R. Peck, L.S. Curtin, J.T. McDevitt, R.W. Murray, J.P. Collman, W.A. Little, T. Zetterer, H.M. Duan, C. Dong, A.M. Hermann, J. Amer. Chem. Soc. 114, 6771 (1992)CrossRefGoogle Scholar
  12. 12.
    S.G. Haupt, D.R. Riley, J.T. Mcdevitt, Adv. Mater. 5, 755 (1993)CrossRefGoogle Scholar
  13. 13.
    S.G. Haupt, D.R. Riley, J. Zhao, J.-P. Zhou, J.H. Grassi, J.T. Mcdevitt, Proc. SPIE. 2158, 238 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    S.G. Haupt, D.R. Riley, J.H. Grassi, R.K. Lo, J. Zhao, J.-P. Zhou, J.T. Mcdevitt, J. Amer. Chem. Soc. 116, 9979 (1994)CrossRefGoogle Scholar
  15. 15.
    M.B. Clevenger, C.E. Jones, S.G. Haupt, J.N. Zhao, J.T. Mcdevitt, Proc. SPIE 2697, 508 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, M. Kawasaki, Nat. Mater. 7, 855 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    J.T. Ye, S. Inoue, K. Kobayashi, Y. Kasahara, H.T. Yuan, H. Shimotani, Y. Iwasa, Nat. Mater. 9, 125 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    K. Ueno, S. Nakamura, H. Shimotani, H.T. Yuan, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, M. Kawasaki, Nature Nanotechnol. 6, 408 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    I. Bozovic, IEEE Trans. Appl. Superconductivity 11, 2686 (2001)CrossRefGoogle Scholar
  20. 20.
    A. Gozar, G. Logvenov, L. Fitting Kourkoutis, A.T. Bollinger, L.A. Giannuzzi, D.A. Muller, I. Bozovic, Nature 455, 782 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    G. Logvenov, A. Gozar, I. Bozovic, Science 326, 699 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    A.T. Bollinger, G. Dubuis, J. Yoon, D. Pavuna, J. Misewich, I. Bozovic, Nature 472, 458 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    M.P.A. Fischer, G. Grinstein, S.M. Girvin, Phys. Rev. Lett. 64, 587 (1990)ADSCrossRefGoogle Scholar
  24. 24.
    A.M. Goldman, N. Marković, Physics Today 51, 39 (1998)CrossRefGoogle Scholar
  25. 25.
    V.F. Gantmakher, V.T. Dolgopolov, Physics – Uspekhi 53, 1 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    G. Dubuis, A. Bollinger, D. Pavuna, I. Bozovic, J. Superc. Nov. Magn. 26, 749 (2013)CrossRefGoogle Scholar
  27. 27.
    X. Leng, J. Garcia-Barriocanal, S. Bose, Y. Lee, A.M. Goldman, Phys. Rev. Lett. 107, 027001 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    T. Nojima, H. Tada, S. Nakamura, N. Kobayashi, H. Shimotani, Y. Iwasa, Phys. Rev. B 84, 020502(R) (2011)ADSCrossRefGoogle Scholar
  29. 29.
    X. Leng, J. Garcia-Barriocanal, B. Yang, Y. Lee, J. Kinney, A.M. Goldman, Phys. Rev. Lett. 108, 067004 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    J. Garcia-Barriocanal, A. Kobrinskii, X. Leng, J. Kinney, B. Yang, S. Snyder, A.M. Goldman, Phys. Rev. B 87, 024509 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • G. Dubuis
    • 1
    • 2
  • A. T. Bollinger
    • 1
  • D. Pavuna
    • 2
  • I. Božović
    • 1
  1. 1.Condensed Matter Physics and Materials Science DepartmentBrookhaven National LaboratoryUptonUSA
  2. 2.Laboratory for Physics of Complex Matter, CREAM-ICMP–FSB, station 3École Polytechnique Fédérale de LausanneLausanne EPFLSwitzerland

Personalised recommendations