Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 5, pp 1203–1215 | Cite as

Electrostatic tuning of the electrical properties of YBa2Cu3O7−x using an ionic liquid

  • X. Leng
  • J. Garcia-Barriocanal
  • J. Kinney
  • B. Yang
  • Y. Lee
  • A. M. GoldmanEmail author
Regular Article Superconductors
  • 285 Downloads

Abstract

Ultrathin YBa2Cu3O7−x (YBCO) films were grown on SrTiO3 (STO) substrates using the technique of high-pressure oxygen sputtering. Films were then incorporated in a field effect transistor configuration, which facilitated the control of superconductivity by electrostatic charging. While devices using STO as both the substrate and gate dielectric have produced only relatively small shifts in film electrical properties, very large changes can be realized using an electric double layer transistor configuration employing the ionic liquid DEME-TFSI as the dielectric. By depleting holes an electrostatically tuned superconductor insulator transition was studied using a finite size scaling analysis. The breakdown of scaling at the lowest temperatures suggests the presence of a mixed insulator/superconductor phase separating the two ground states. Further depletion of holes resulted in a change of the majority carriers from holes to electrons and the emergence of what appeared to be very weak re-entrant superconductivity. Also by accumulating holes an underdoped film was tuned into the overdoped regime. A two-step mechanism for electrostatic doping was revealed. Hall effect measurements suggested the presence of an electronic phase transition or a change in the Fermi surface as a function of doping near optimal doping.

Keywords

European Physical Journal Special Topic Sheet Resistance Gate Voltage Quantum Critical Point Normal Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.G. Bednorz, K.A. Muller, Z. Phys. B: Cond. Matter 64, 189 (1986)CrossRefGoogle Scholar
  2. 2.
    M.K. Wu, et al., Phys. Rev. Lett. 58, 908 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Tokura, H. Takagi, S. Uchida, Nature (London) 337, 345 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    N.P. Armitage, P. Fournier, R.L. Greene, Rev. Mod. Phys. 82, 2421 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    C.H. Ahn, et al., Rev. Mod. Phys. 78, 1185 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    C.H. Ahn, et al., Science 284, 1152 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    H.L.F. von Helmholtz, Ann. Physik 89, 211 (1853)ADSCrossRefGoogle Scholar
  8. 8.
    J.T. Ye, et al., Nature Mater. 9, 125 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Lee, et al., Phys. Rev. Lett. 106, 136809 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    H. Shimotani, et al., Appl. Phys. Lett. 91, 082106 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    A.T. Bollinger, et al., Nature (London) 472, 458 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    X. Leng, et al., Phys. Rev. Lett. 107, 027001 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    J. Garcia-Barriocanal, et al., Phys. Rev. B 87, 024509 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    W.H. Brattain, C.G.B. Garrett, Bell Syst. Techn. J. 34, 129 (1955)Google Scholar
  15. 15.
    S.G. Haupt, et al., J. Am. Chem. Soc. 115, 1196 (1993)CrossRefGoogle Scholar
  16. 16.
    A.S. Dhoot, et al., Adv. Mater. 22, 2529 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Varela, et al., Phys. Rev. Lett. 86, 5156 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    M. Varela, et al., Phys. Rev. Lett. 83, 3936 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    H.M. Jaeger, et al., Phys. Rev. B 40, 182 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    N. Doiron-Leyraud, et al., Nature (London) 447, 565 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    I.F. Herbut, Phys. Rev. Lett. 87, 137004 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    M. Ruhlander, C.M. Soukoulis, Phys. Rev. B 63, 085103 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    D.-H. Lee, Z. Wang, S. Kivelson, Phys. Rev. Lett. 70, 4130 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    M. Salluzzo, et al., Phys. Rev. Lett. 100, 056810 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    R. Liang, D.A. Bonn, W.N. Hardy, Phys. Rev. B 73, 180505 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    M.R. Presland, et al., Physica C 176, 95 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    J.L. Tallon, et al., Phys. Rev. B 51, 12911 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    X. Leng, et al., Phys. Rev. Lett. 108, 067004 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    K. Segawa, Y. Ando, Phys. Rev. Lett. 86, 4907 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    F.F. Balakirev, et al., Nature (London) 424, 912 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    F.F. Balakirev, et al., Phys. Rev. Lett. 102, 017004 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    J.L. Tallon, et al., Phys. Status Solidi B 215, 531 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    C. Jaudet, et al., Phys. Rev. Lett. 100, 187005 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    B. Vignolle, et al., Nature (London) 455, 952 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    D. LeBoeuf, et al., Nature (London) 450, 533 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    M.R. Norman, et al., Nature (London) 392, 157 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    K.M. Shen, et al., Science 307, 901 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    M. Plate, et al., Phys. Rev. Lett. 95, 077001 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    M.A. Hossain, et al., Nature Phys. 4, 527 (2008)CrossRefGoogle Scholar
  40. 40.
    M.R. Norman, Physics 3, 86 (2010)CrossRefGoogle Scholar
  41. 41.
    K. Segawa, et al., Nat. Phys. 6, 579 (2010)CrossRefGoogle Scholar
  42. 42.
    T. Nojima, et al., Phys. Rev. B 84, 020502 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    M. Gurvitch, et al., Physica C 153-155, 1369 (1988)ADSCrossRefGoogle Scholar
  44. 44.
    C. Tsuei, A. Gupta, G. Koren, Physica C 161, 415 (1989)ADSCrossRefGoogle Scholar
  45. 45.
    Y. Ando, et al., Phys. Rev. B 61, R14956 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    T.D. Stanescu, P. Phillips, Phys. Rev. B 69, 245104 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    W. Jiang, et al., Phys. Rev. Lett. 73, 1291 (1994)ADSCrossRefGoogle Scholar
  48. 48.
    B.G. Orr, H.M. Jaeger, A.M. Goldman, Phys. Rev. B 32, 7586 (1985)ADSCrossRefGoogle Scholar
  49. 49.
    M. Kunchir, et al., Phys. Rev. B 36, 4062 (1987)ADSCrossRefGoogle Scholar
  50. 50.
    A. Gerber, et al., Phys. Rev. Lett. 65, 3201 (1990)ADSCrossRefGoogle Scholar
  51. 51.
    W.A. Fertig, et al., Phys. Rev. Lett. 38, 987 (1977)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • X. Leng
    • 1
  • J. Garcia-Barriocanal
    • 2
  • J. Kinney
    • 1
  • B. Yang
    • 1
  • Y. Lee
    • 1
  • A. M. Goldman
    • 1
    Email author
  1. 1.School of Physics and AstronomyUniversity of MinnesotaMinneapolisUSA
  2. 2.GFMC, Departamento de Fsica Aplicada IIIUniversidad Complutense de MadridMadridSpain

Personalised recommendations