The European Physical Journal Special Topics

, Volume 222, Issue 5, pp 1177–1183 | Cite as

2-Dimensional oxide electronic gases: Interfaces and surfaces

  • M. Gabay
  • S. Gariglio
  • J.-M. Triscone
  • A.F. Santander-Syro
Review Interfaces and Surfaces

Abstract

Numerous solid-state properties depend on the crystal structure. Recently, the idea of searching for novel properties or novel functionalities at artificial interfaces – where a breaking of inversion symmetry and a change in the atomic environment occur – has been developing rapidly and has led to a large new field of research. In this short paper, we will summarize the properties of the 2-d electron gas found at the interface between the two band insulators LaAlO3 and SrTiO3, discuss briefly the recent observations of electron gases at oxide surfaces and examine the possible similarities and differences between these exciting systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.H. Ahn, et al., Rev. Mod. Phys. 78, 1185 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    P. Zubko, S. Gariglio, M. Gabay, Ph. Ghosez, J.-M. Triscone, Ann. Rev. Cond. Matter Phys. 2, 141165 (2011)Google Scholar
  3. 3.
    H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, Y. Tokura, Nature Mater. 11, 103113 (2012)CrossRefGoogle Scholar
  4. 4.
    A. Ohtomo, H.Y. Hwang, Nature 427, 423 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    N. Nakagawa, H.Y. Hwang, D.A. Muller, Nature Mater. 5, 204209 (2006)CrossRefGoogle Scholar
  6. 6.
    Z.S. Popovic, et al., Phys. Rev. Lett. 101, 256801 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    A.D. Caviglia, et al., Nature 456, 624 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    C. Bell, et al., Phys. Rev. Lett. 103, 226802 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    T. Schneider, A. Caviglia, S. Gariglio, N. Reyren, J.-M. Triscone, Phys. Rev. B 79, 184502 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    A.D. Caviglia, et al., Phys. Rev. Lett. 104, 126803 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    A. Fête, S. Gariglio, A. Caviglia, J.-M. Triscone, M. Gabay, Phys. Rev. B 86, 201105(R) (2012)ADSCrossRefGoogle Scholar
  12. 12.
    P. Delugas, et al., Phys. Rev. Lett. 106, 166807 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    A.D. Caviglia, et al., Phys. Rev. Lett. 105, 236802 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    M. Ben Shalom, A. Ron, A. Palevski, Y. Dagan, Phys. Rev. Lett. 105, 206401 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    C. Cen, et al., Nature Mater. 7, 298302 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    C. Cen, S. Thiel, J. Mannhart, J. Levy, Science 323, 10261030 (2009)CrossRefGoogle Scholar
  17. 17.
    D. Stornaiuolo, et al., Appl. Phys. Lett. 101, 222601 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    L. Li, C. Richter, J. Mannhart, R.C. Ashoori, Nature Phys. 7, 762 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    J.A. Bert, et al., Nature Phys. 7, 767 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, M. Kawasaki, Nature Mater. 7, 855 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    K. Ueno, S. Nakamura, H. Shimotani, H.T. Yuan, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, M. Kawasaki, Nature Nanotechnology 6, 408 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    H. Nakamura, T. Kimura, Phys. Rev. B 80, 121308(R) (2009)ADSGoogle Scholar
  23. 23.
    H. Nakamura, T. Koga, T. Kimura, Phys. Rev. Lett. 108, 206601 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    A.F. Santander-Syro, et al., Phys. Rev. B 86, 121107(R) (2012)ADSCrossRefGoogle Scholar
  25. 25.
    A.F. Santander-Syro, et al., Nature 469, 189 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    W. Meevasana, et al., Nature Mater. 10, 114 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    N.P. Guisinger, et al., ACS Nano 3, 4132 (2009)CrossRefGoogle Scholar
  28. 28.
    Y. Lee, et al., Phys. Rev. Lett. 106, 136809 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    P.D.C. King, et al., Phys. Rev. Lett. 108, 117602 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    R. Pentcheva, W.E. Pickett, Phys. Rev. Lett. 102, 107602 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    R. Pentcheva, W.E. Pickett, J. Phys.: Cond. Matter 22, 043001 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    M. Sing, et al., Phys. Rev. Lett. 102, 176805 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    C. Cantoni, et al., Adv. Mater. 24, 39523957 (2012)CrossRefGoogle Scholar
  34. 34.
    G. Herranz, F. Sanchez, N. Dix, M. Scigaj, J. Fontcuberta, Scientific Reports 2, 758 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    A. Annadi, Q. Zhang, X. Renshaw Wang, N. Tuzla, K. [Gopinadhan, W.M. Lü, A. Roy Barman, Z.Q. Liu, A. Srivastava, S. Saha, Y.L. Zhao, S.W. Zeng, S. Dhar , E. Olsson, B. Gu, S. Yunoki, S. Maekawa, H. Hilgenkamp, T. Venkatesan, Ariando, Nat. Comm. 4, 1838 (2013), doi:10.1038/ncomms2804ADSCrossRefGoogle Scholar
  36. 36.
    F. El-Mellouhi, et al., Phys. Rev. B 87, 035107 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    M. Stengel, Phys. Rev. Lett. 106, 136803 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • M. Gabay
    • 1
  • S. Gariglio
    • 2
  • J.-M. Triscone
    • 2
  • A.F. Santander-Syro
    • 3
  1. 1.Laboratoire de Physique des Solides, Bât. 510Université Paris-Sud 11, Centre d’OrsayOrsay CedexFrance
  2. 2.DPMC-MaNEPUniversity of GenevaGenevaSwitzerland
  3. 3.CSNSMUniversité Paris-Sud and CNRS/IN2P3Orsay CedexFrance

Personalised recommendations