The European Physical Journal Special Topics

, Volume 222, Issue 5, pp 1161–1175 | Cite as

Optical pump-probe scanning tunneling microscopy for probing ultrafast dynamics on the nanoscale

  • S. Yoshida
  • Y. Terada
  • M. Yokota
  • O. Takeuchi
  • H. Oigawa
  • H. Shigekawa
Review Interfaces and Surfaces


The development of a method for exploring the ultrafast transient dynamics in small organized structures with high spatial resolution is expected to be a basis for further advances in current science and technology. Recently, we have developed a new microscopy technique by combining scanning tunneling microscopy (STM) with ultrashort-pulse laser technology, which enables the visualization of ultrafast carrier dynamics even on the single-atomic level. A nonequilibrium carrier distribution is generated using ultrashort laser pulses and its relaxation processes are probed by STM using the optical pump-probe method realized in STM by the pulse-picking technique. In this paper, the fundamentals of the new microscopy technique are overviewed.


GaAs European Physical Journal Special Topic Scan Tunneling Microscopy Pump Pulse Probe Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Binning, H. Rohrer, H, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    R. Wisendanger, Scanning Probe Microscopy and Spectroscopy (Cambridge University Press, Cambridge, 1994)Google Scholar
  3. 3.
    M. Berthe, R. Stiufiuc, B. Grandidier, D. Deresmes, C. Delerue, D. Stiévenard, Science 319, 436 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    D. Kitchen, A. Richardella, J.-M. Tang, M.E. Flatté, A. Yazdani, Nature 442, 436 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    M.-X. Wang, et al., Science 336, 52 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    A.A. Khajetoorians, B. Chilian, J. Wiebe, S. Schuwalow, F. Lechermann, R. Wiesendanger, Nature 467, 1084 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    T. Komeda, H. Isshiki, J. Liu, Y.–F. Zhang, N. Lorente, K. Katoh, B.K. Breedlove, M. Yamashita, Nat. Commun. 2, 217 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    T. Okuda, T. Eguchi, K. Akiyama, A. Harasawa, T. Kinoshita, Y. Hasegawa, M. Kawamori, Y. Haruyama, S. Matsui, Phys. Rev. Lett. 102, 105503 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    H.J. Mamin, H. Birk, P. Wimmer, D. Rugar, J. Appl. Phys. 75, 161 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    U. Kemiktarak, T. Ndukum, K.C. Schwab, K.L. Ekinci, Nature 450, 85 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    S. Weiss, D.F. Ogletree, D. Botkin, M. Salmeron, D.S. Chemla, Appl. Phys. Lett. 63, 2567 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    G. Nunes Jr, M.R. Freeman, Science 262, 1029 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    I. Moult, M. Herve, Y. Pennec, Appl. Phys. Lett. 98, 233103 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    S. Loth, M. Etzkorn, C.P. Lutz, D.M. Eigler, A.J. Heinrich, Science 329, 1628 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    R.J. Hamers, David G. Cahill, Appl. Phys. Lett. 57, 2031 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    S.W. Wu, W. Ho, Phys. Rev. B. 82, 085444 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    I. Moult, M. Herve, Y. Pennec, Appl. Phys. Lett. 98, 233013 (2011)CrossRefGoogle Scholar
  18. 18.
    C. Saunus, J.R. Bindel, M. Pratzer, M. Morgenstern, Appl. Phys. Lett. 102, 051601 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    O. Takeuchi, M. Aoyama, R. Oshima, Y. Okada, H. Oigawa, N. Sano, H. Shigekawa, R. Morita, M. Yamashita, Appl. Phys. Lett. 85, 3268 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    M. Yamashita, H. Shigekawa, R. Morita, Mono-Cycle Photonics and Optical Scanning Tunneling Microscopy-Route to Femtosecond Angstrom Technology (Springer, Berlin, Heidelberg, 2005)Google Scholar
  21. 21.
    O. Takeuchi, M. Aoyama, H. Shigekawa, Jpn. J. Appl. Phys. 44, 5354 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Terada, S. Yoshida, O. Takeuchi, H. Shigekawa. J. Phys. Cond. Mat. 22, 264008 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    H. Shigekawa, S. Yoshida, O. Takeuchi, M. Aoyama, Y. Terada, H. Kondo, H. Oigawa, Thin Solid Films 516, 2348 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Terada, S. Yoshida, O. Takeuchi, H. Shigekawa, Nature Photonics 4, 869 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Terada, S. Yoshida, O. Takeuchi, H. Shigekawa, Adv. Opt. Tech. 2011, 510186 (2011)Google Scholar
  26. 26.
    S. Yoshida, Y. Terada, R. Oshima, O. Takeuchi, H. Shigekawa, Nanoscale 4, 757 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    S. Yoshida, Y. Terada, M. Yokota, O. Takeuchi, Y. Mera, H. Shigekawa, Appl. Phys. Exp. 6, 016601 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    H. Shigekawa, O. Takeuchi, Y . Terada, S. Yoshida, Series: Handbook of Nanophysics, vol. 6, Principles and Methods, edited by Klaus Sattler (Taylor & Francis, New York, 2010)Google Scholar
  29. 29.
    S. Yoshida, M. Yokota, O. Takeuchi, H. Oigawa, Y. Mera, H. Shigekawa, Appl. Phys. Exp. 6, 032401 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, Berlin, Heidelberg, 1999)Google Scholar
  31. 31.
    S. Grafström, J. Appl. Phys. 91, 1717 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    S. Gupta, M.Y. Frankel, J.A. Valdmanis, J.F. Whitaker, G.A. Mourou, F.W. Smith, A.R. Calawa, Appl. Phys. Lett. 59, 3276 (1991)ADSCrossRefGoogle Scholar
  33. 33.
    M. McEllistrem, G. Haase, D. Chen, R.J. Hamers, Phys. Rev. Lett. 70, 2471 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    R.M. Feenstra, Y. Dong, M.P. Semtsiv, W.T. Masselink, Nanotechnology 18, 044015 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    O. Takeuchi, S. Yoshida, H. Shigekawa, Appl. Phys. Lett. 84, 3645 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    S. Yoshida, Y. Kanitani, R. Oshima, Y. Okada, O. Takeuchi, H. Shigekawa, Phys. Rev. Lett. 98, 026802 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Ch. Sommerhalter, Th.W. Matthes, J. Boneberg, P. Leiderer, M. Ch. Lux-Steiner, J. Vac. Sci. Technol. B 15, 1876 (1997)CrossRefGoogle Scholar
  38. 38.
    H. Ohno, in Semiconductor Spintronics and Quantum Computation, edited by D.D. Awschalom, N. Samarth, and D. Loss (Springer, Berlin, 2002)Google Scholar
  39. 39.
    A. Richardella, D. Kitchen, A. Yazdani, Phys. Rev. B. 80, 045318 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    H. Oigawa, M. Yokota, T. Kishizawa, S. Yoshida, O. Takeuchi, H. Shigekawa, Abstracts 20th International Colloquium on Scanning Probe Microscopy, Okinawa (2012), p. 108Google Scholar
  41. 41.
    H. Oigawa, J.-F. Fan, Y. Nannichi, K. Ando, K. Saiki, A. Koma, Jpn. J. Appl. Phys. 28, L340 (1989)ADSCrossRefGoogle Scholar
  42. 42.
    J.J. Gu, A.T. Neal, P.D. Ye, Appl. Phys. Lett. 99, 152113 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    S. Tsukamoto, N. Koguchi, Appl. Phys. Lett. 65, 2199 (1994)ADSCrossRefGoogle Scholar
  44. 44.
    H. Shigekawa, H. Oigawa, K. Miyake, Y. Aiso, Y. Nannichi, T. Hashizume, T. Sakurai, Appl. Phys. Lett. 65, 607 (1994)ADSCrossRefGoogle Scholar
  45. 45.
    H. Shigekawa, H. Hashizume, H. Oigawa, K. Motai, Y. Mera, Y. Nannichi, T. Sakurai, Appl. Phys. Lett. 59, 2986 (1991)ADSCrossRefGoogle Scholar
  46. 46.
    H. Sugahara, M. Oshima, H. Oigawa, H. Shigekawa, Y. Nannichi, J. Appl. Phys. 69, 4349 (1991)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • S. Yoshida
    • 1
  • Y. Terada
    • 1
  • M. Yokota
    • 1
  • O. Takeuchi
    • 1
  • H. Oigawa
    • 1
  • H. Shigekawa
    • 1
  1. 1.Graduate School of Pure and Applied SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations