Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 5, pp 1046–1056 | Cite as

Electric field induced avalanche breakdown and non-volatile resistive switching in the Mott Insulators AM4Q8

  • B. CorrazeEmail author
  • E. Janod
  • L. Cario
  • P. Moreau
  • L. Lajaunie
  • P. Stoliar
  • V. Guiot
  • V. Dubost
  • J. Tranchant
  • S. Salmon
  • M.-P. Besland
  • V. Ta Phuoc
  • T. Cren
  • D. Roditchev
  • N. Stéphant
  • D. Troadec
  • M. RozenbergEmail author
Regular Article Mott Insulators

Abstract

The Mott insulator compounds AM4Q8 exhibit a new type of volatile and non volatile resistive switchings that are of interest for RRAM application. We found that above a threshold electric field E TH of the order of a few kV/cm these compounds undergo a volatile resistive switching based on an avalanche process. For electric field much higher than the threshold avalanche breakdown field, the resistive switching turns non volatile. Our EDXS and STEM analyses show that the non volatile resistive switching originating from the avalanche breakdown can neither be ascribed to local chemical modifications nor to a local phase change with symmetry breaking at a resolution better than a few nanometer. This is in strong contrast with non volatile resistive switching reported so far that are all based on chemical or structural changes. Conversely, our results suggest that the avalanche breakdown induce the collapse of the Mott insulating state at the local scale and the formation of a granular conductive filament formed by compressed metallic domains and expanded “superinsulating” domains.

Keywords

European Physical Journal Special Topic Voronoi Diagram Phase Change Material Resistive Switching Mott Insulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “International technology roadmap for semiconductors” 2011, www.itrs.net
  2. 2.
    R. Waser, M. Aono, Nat. Mater. 6, 833 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    M. Rozenberg, Scholarpedia 6, 11414 (2011)CrossRefGoogle Scholar
  4. 4.
    A. Sawa, Materials Today 11, 28 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    J. Yang, I. Inoue, T. Mikolajick, C. Hwang, MRS Bull. 37, 131 (2012)CrossRefGoogle Scholar
  6. 6.
    J. Yang, D. Strukov, D. Stewart, Nature Nanotechn. 8, 13 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Pershin, M. Di Ventra, Adv. Phys. 60, 145 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    A. Lacaita, D. Wouters, Physica Status Solidi (a) 205, 2281 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)CrossRefGoogle Scholar
  10. 10.
    J. Kim, C. Ko, A. Frenzel, S. Ramanathan, J. Hoffman, Appl. Phys. Lett. 96, 213106 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. West, J. Ramirez, I. Schuller, Phys. Rev. Lett. 110, 056601 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    T. Driscoll, H. Kim, B. Chae, M. Di Ventra, D. Basov, Appl. Phys. Lett. 95, 043503 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    M. Qazilbash, M. Brehm, B. Chae, P. Ho, G. Andreev, B. Kim, S. Yun, A. Balatsky, M. Maple, F. Keilmann, et al., Science 318, 1750 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    R. Waser, Nanoelectronics and Information Technology (Wiley, 2012)Google Scholar
  15. 15.
    L. Cario, C. Vaju, B. Corraze, V. Guiot, E. Janod, Adv. Mater. 22, 5193 (2010)CrossRefGoogle Scholar
  16. 16.
    V. Guiot, L. Cario, E. Janod, B. Corraze, V.T. Phuoc, M. Rozenberg, P. Stoliar, T. Cren, D. Roditchev, Nature Comm. (2012) (accepted)Google Scholar
  17. 17.
    C. Vaju, L. Cario, B. Corraze, E. Janod, V. Dubost, T. Cren, D. Roditchev, D. Braithwaite, O. Chauvet, Adv. Mater. 20, 2760 (2008)CrossRefGoogle Scholar
  18. 18.
    C. Vaju, L. Cario, B. Corraze, E. Janod, V. Dubost, T. Cren, D. Roditchev, D. Braithwaite, O. Chauvet, Microelectronic Eng. 85, 2430 (2008)CrossRefGoogle Scholar
  19. 19.
    E. Souchier, L. Cario, B. Corraze, P. Moreau, P. Mazoyer, C. Estournès, R. Retoux, E. Janod, M.-P. Besland, Phys. Status Solidi RRL 5, 53 (2011)CrossRefGoogle Scholar
  20. 20.
    E. Souchier, L. Cario, B. Corraze, C. Estournes, V. Fernandez, T. Skotnicki, P. Mazoyer, E. Janod, M.-P. Besland, Proc. IEEE Int. Memory Workshop IMW ’09, 1 (2009)Google Scholar
  21. 21.
    E. Souchier, C. Vaju, V. Guiot, B. Corraze, E. Janod, J. Tranchant, P. Mazoyer, M.-P. Besland, L. Cario, Proc. 3rd IEEE Int. Memory Workshop (IMW), 1 (2011)Google Scholar
  22. 22.
    E. Souchier, M. Besland, J. Tranchant, B. Corraze, P. Moreau, R. Retoux, C. Estournès, P. Mazoyer, L. Cario, E. Janod, Thin Solid Films (2012)Google Scholar
  23. 23.
    H. Yaich, J. Jegaden, M. Potel, M. Sergent, A. Rastogi, R. Tournier, J. Less Common Metals 102, 9 (1984)CrossRefGoogle Scholar
  24. 24.
    R. Pocha, D. Johrendt, B. Ni, M.M. Abd-Elmeguid, J. Am. Chem. Soc. 127, 8732 (2005)CrossRefGoogle Scholar
  25. 25.
    E. Dorolti, L. Cario, B. Corraze, E. Janod, C. Vaju, H. Koo, E. Kan, M. Whangbo, J. Am. Chem. Soc. 132, 5704 (2010)CrossRefGoogle Scholar
  26. 26.
    C. Vaju, J. Martial, E. Janod, B. Corraze, V. Fernandez, L. Cario, Chem. Mater. 20, 2382 (2008)CrossRefGoogle Scholar
  27. 27.
    V. Ta Phuoc, C. Vaju, B. Corraze, R. Sopracase, A. Perucchi, C. Marini, P. Postorino, M. Chligui, S. Lupi, E. Janod, et al., Phys. Rev. Lett. 110, 037401 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    M. Abd-Elmeguid, B. Ni, D. Khomskii, R. Pocha, D. Johrendt, X. Wang, K. Syassen, Phys. Rev. Lett. 93, 126403 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    J.L. Hudgins, G.S. Simin, E. Santi, M.A. Khan, Power Electronics, IEEE Trans. 18, 907 (2003)Google Scholar
  30. 30.
    J.L. Hudgins, J. Electronic Mater. 32, 471 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    E. Levinshtein, J. Kostamovaara, S. Vainshtein, Breakdown Phenomena in Semiconductors and Semiconductor Devices (World Scientific, 2005)Google Scholar
  32. 32.
    J. Tranchant, E. Janod, L. Cario, B. Corraze, E. Souchier, J. Leclercq, P. Cremillieu, P. Moreau, M. Besland, Thin Solid Films (2012) doi:10.1016/j.tsf.2012.10.104
  33. 33.
    V. Dubost, T. Cren, F. Debontridder, D. Roditchev, C. Vaju, V. Guiot, L. Cario, B. Corraze, E. Janod, arXiv preprint [arXiv:1205.4548] (2012)
  34. 34.
    V. Dubost, T. Cren, C. Vaju, L. Cario, B. Corraze, E. Janod, F. Debontridder, D. Roditchev, Adv. Funct. Mater. 19, 2800 (2009)CrossRefGoogle Scholar
  35. 35.
    D.B. McWhan, A. Menth, J.P. Remeika, W.F. Brinkman, T.M. Rice, Phys. Rev. B 7, 1920 (1973)ADSCrossRefGoogle Scholar
  36. 36.
    F. Aurenhammer, ACM Computing Surveys (CSUR) 23, 345 (1991)CrossRefGoogle Scholar
  37. 37.
    M.M.A. Ferrero [arXiv:1105.4246] [cs.CG], (2011)

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • B. Corraze
    • 1
    Email author
  • E. Janod
    • 1
  • L. Cario
    • 1
  • P. Moreau
    • 1
  • L. Lajaunie
    • 1
  • P. Stoliar
    • 1
    • 2
    • 3
  • V. Guiot
    • 1
  • V. Dubost
    • 4
  • J. Tranchant
    • 1
  • S. Salmon
    • 1
  • M.-P. Besland
    • 1
  • V. Ta Phuoc
    • 5
  • T. Cren
    • 4
  • D. Roditchev
    • 4
  • N. Stéphant
    • 1
  • D. Troadec
    • 6
  • M. Rozenberg
    • 2
    Email author
  1. 1.Institut des Matériaux Jean Rouxel (IMN)Université de Nantes, CNRSNantesFrance
  2. 2.Laboratoire de Physique des Solides, CNRS UMR 8502Université Paris SudOrsayFrance
  3. 3.ECyTUniversidad Nacional de San MartínSan MartínArgentina
  4. 4.Institut des Nanosciences de ParisUniversité Pierre et Marie Curie, CNRS UMR 7588ParisFrance
  5. 5.GREMAN, CNRS UMR 7347 Université F. Rabelais, UFR Sciences37200France
  6. 6.Institut d’Electronique de Microélectronique et de Nanotechnologie, (IEMN), UMR CNRS 8520Villeneuve d’Ascq CedexFrance

Personalised recommendations