Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 5, pp 1005–1016 | Cite as

Dynamics of charge density wave order in the quasi one dimensional conductor (TaSe4)2I probed by femtosecond optical spectroscopy

  • H. Schaefer
  • M. Koerber
  • A. Tomeljak
  • K. Biljaković
  • H. Berger
  • J. Demsar
Regular Article Charge Density Waves

Abstract

Carrier and collective mode dynamics in the quasi one-dimensional charge density wave (CDW) system (TaSe4)2I have been investigated by means of time-resolved optical pump-probe spectroscopy. In the low excitation, linear, regime we focus on the temperature dependence of the collective amplitude modes, originating from linear coupling of the electronic modulation to phonons at q CDW. Numerous amplitude modes are observed, ranging from 100 GHz to several THz. The modes’ softening near T c is rather weak, which could be related to strong decoupling of electronic and lattice subsystems. Alternatively, the data could be reconciled also in case the CDW phase transition is of the first-order type where a nearly constant order parameter below T c would prevent softening. In the high excitation regime we investigated the energetics of the photoinduced CDW-normal phase transition. Similarly to the elaborately investigated one-dimensional CDW system K0.3MoO3 we observe two characteristic energy scales, related to melting the electronic modulation alone (100 meV per unit cell) and to the overall (electronic modulation and the periodic lattice distortion) collapse of the CDW (> 400 meV per unit cell). While the latter coincides with the thermal energy needed to heat the sample from 5 K above T c the former is consistent with the mean field estimate for the electronic condensation energy, suggesting that the weak coupling description of the CDW in (TaSe4)2I is appropriate.

Keywords

European Physical Journal Special Topic Charge Density Wave Excitation Density Absorb Energy Density Charge Density Wave Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Pashkin, et al., Phys. Rev. Lett. 105, 067001 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    N. Dean, et al., Phys. Rev. Lett. 106, 016401 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    M. Beck, et al., Phys. Rev. Lett. 107, 177007 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    K.W. Kim, et al., Nature Mater. 11, 497 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    L. Perfetti, et al., Phys. Rev. Lett. 97, 067402 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    F. Schmitt, et al., Science 321, 1649 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    R. Cortés, et al., Phys. Rev. Lett. 107, 097002 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    C.L. Smallwood, et al., Science 336, 1137 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    T. Rohwer, et al., Nature 471, 490 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    K. Sokolowski-Tinten, et al., Nature 422, 287 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    E. Mohr-Vorobeva, et al., Phys. Rev. Lett. 107, 036403 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    R.J.D. Miller, et al., Acta Cryst. A66, 137 (2010)Google Scholar
  13. 13.
    M. Chergui, A.H. Zewail, Chem. Phys. Chem. 10, 28 (2009)CrossRefGoogle Scholar
  14. 14.
    M. Eichberger, et al., Nature 468, 799 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    N. Erasmus, et al., Phys. Rev. Lett. 109, 167402 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    T-R. T. Han, et al., Phys. Rev. B 86, 075145 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    S. Wall, et al., Phys. Rev. Lett. 109, 186101 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    A. Tomeljak, et al., Phys. Rev. Lett. 102, 066404 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    H. Schäfer, et al., Phys. Rev. Lett. 105, 066402 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    R. Yusupov, et al., Nature Phys. 6, 681 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    P. Kusar, et al., Phys. Rev. B 83, 035104 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Hanjo Schäfer, Doctoral Thesis (Verlag Dr. Hut, München, 2011) ISBN 978-3-8439-0241-0Google Scholar
  23. 23.
    J.E. Lorenzo, et al., J. Phys.: Cond. Mat. 10, 5039 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    P. Monceau, Adv. Phys. 61, 325 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    S. Aubry, G. Abramovici, J.-L. Raimbault, J. Stat. Phys. 67, 675 (1992)MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    P. Gressier, L. Guemas, A. Meerschaut, Acta Cryst. Sec. B 38, 2877 (1982)CrossRefGoogle Scholar
  27. 27.
    L. Forro, J.R. Cooper, A. Janossy, M. Maki, Sol. State Comm. 62, 715 (1987)ADSCrossRefGoogle Scholar
  28. 28.
    C. Bansal, K. Surendranath, Sol. State Comm. 76, 209 (1990)ADSCrossRefGoogle Scholar
  29. 29.
    P. Gressier, M.H. Whangbo, A. Meerschaut, J. Rouxel, Inorg. Chem. 23, 1221 (1984)CrossRefGoogle Scholar
  30. 30.
    H.P. Geserich, G. Scheiber, M. Dorrler, F. Levy, P. Monceau, Physica B+C 143, 198 (1986)ADSCrossRefGoogle Scholar
  31. 31.
    Z.Z. Wang, H.P. Geserich, G. Scheiber, M. Dorrler, F. Levy, P. Monceau, Sol. State Comm. 46, 325 (1983)ADSCrossRefGoogle Scholar
  32. 32.
    D. Berner, G. Scheiber, A. Gaymann, H. Geserich, P. Monceau, F. Levy, J. Phys. IV (France) 3, 255 (1993)CrossRefGoogle Scholar
  33. 33.
    H. Fujishita, M. Sato, S. Hoshino., J. Phys. C: Sol. State Phys. 18, 1105 (1985)ADSCrossRefGoogle Scholar
  34. 34.
    C. Roucau, R. Ayroles, P. Gressier, A. Meerschaut, J. Phys. C: Sol. State Phys. 17, 2993 (1984)ADSCrossRefGoogle Scholar
  35. 35.
    S. Sugai, M. Sato, S. Kurihara, Phys. Rev. B 32, 6809 (1985)ADSCrossRefGoogle Scholar
  36. 36.
    I. Bozovic, et al., Phys. Rev. B 69, 132503 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    C. Thomsen, et al., Phys. Rev. B 34, 4129 (1986)ADSCrossRefGoogle Scholar
  38. 38.
    J. Demsar, K. Biljakovic, D. Mihailovic, Phys. Rev. Lett. 83, 800 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    V. Favre-Nicolin, et al., Phys. Rev. Lett. 87, 015502 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    S. vav Smaalen, E.J. Lam, J. Ludecke, J. Phys.: Cond. Mat. 13, 9923 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    M.S. Sherwin, A. Zettl, P.L. Richards, Phys. Rev. B 36, 6708 (1987)ADSCrossRefGoogle Scholar
  42. 42.
    A. Tomeljak, Doctoral Thesis (Ljubljana, Slovenia, 2009)Google Scholar
  43. 43.
    R.S. Kwok, S.E. Brown, Phys. Rev. Lett. 63, 895 (1989)ADSCrossRefGoogle Scholar
  44. 44.
    H. Schaefer, et al., Suplementary material to: Phys. Rev. Lett. 105, 066402 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    G. Grüner, Density Waves in Solids (Addison-Wesley Publishing Company, 1994)Google Scholar
  46. 46.
    D. Starešinić, et al., Eur. Phys. J. B 29, 71 (2002)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • H. Schaefer
    • 1
  • M. Koerber
    • 1
  • A. Tomeljak
    • 2
  • K. Biljaković
    • 3
  • H. Berger
    • 4
  • J. Demsar
    • 1
    • 5
  1. 1.Dept. of Physics and ZukunftskollegUniv. of KonstanzKonstanzGermany
  2. 2.Complex Matter DepartmentJozef Stefan InstituteLjubljanaSlovenia
  3. 3.Institute of PhysicsZagrebCroatia
  4. 4.Physics DepartmentEPFLLausanneSwitzerland
  5. 5.Institute of PhysicsIlmenau University of TechnologyIlmenauGermany

Personalised recommendations