Advertisement

Generalized synchronization of coupled chaotic systems

  • S. Acharyya
  • R. E. Amritkar
Review Complex Networks and Synchronization

Abstract

In this paper we briefly report some recent developments on generalized synchronization. We discuss different methods of detecting generalized synchronization. We first consider two unidirectionally coupled systems and then two mutually coupled systems. We then extend the study to a network of coupled systems. In the study of generalized synchronization of coupled nonidentical systems we discuss the Master Stability Function (MSF) formalism for coupled nearly identical systems. Later we use this MSF to construct synchronized optimized networks. In the optimized networks the nodes which have parameter value at one extreme are chosen as hubs and the pair of nodes with larger difference in parameter are chosen to create links.

Keywords

Lyapunov Exponent Couple System European Physical Journal Special Topic Coupling Parameter Coupling Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Strogatz, Sync: The Emerging Science of Spontaneous Order (Penguin Books, Limited UK, 2008)Google Scholar
  2. 2.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2001)Google Scholar
  3. 3.
    S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou, Phys. Rep. 366, 1 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    A. Arenas, A.D. -Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    H. Fujisaka, T. Yamada, Prog. Theor. Phys. 69, 32 (1983)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    V.S. Afraimovich, N.N. Verichev, M.I. Rabinovich, Radiophys. Quantum Electron. 29, 795 (1986)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 64, 821 (1990)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 76, 1804 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, H.D.I. Abarbanel, Phys. Rev. E 51, 980 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    N.H. Packard, J.P. Crutchfield, J.D. Farmer, R.S. Shaw, Phys. Rev. Lett. 45, 712 (1980)ADSCrossRefGoogle Scholar
  11. 11.
    M.B. Kennel, R. Brown, H.D.I. Abarbanel, Phys. Rev. A 45, 3403 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    H.D.I. Abarbanel, R. Brown, J.J. Sidorowich, L.S. Tsimring, Rev. Mod. Phys. 65, 1331 (1993)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    H.D.I. Abarbanel, N.F. Rulkov, M.M. Sushchik, Phys. Rev. E 53, 4528 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    R. He, P.G. Vaidya, Phys. Rev. A 46, 7387 (1992)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    L. Kocarev, U. Parlitz, Phys. Rev. Lett. 76, 1816 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    Z. Zheng, X. Wang, M.C. Cross, Phys. Rev. E 65, 056211 (2002)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    O.I. Moskalenko, A.A. Koronovskii, A.E. Hramov, S. Boccaletti, Phys. Rev. E 86, 036216 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Between the region when D y is zero, but D x is nonzero, we get weak generalized synchronization. We do not discuss the details of this phenomena here which can be found in K. Pyragas, Phys. Rev. E 54, R4508 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 80, 2109 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Y.-C. Hung, Y.-T. Huang, M.-C. Ho, C.-K. Hu, Phys. Rev. E 77, 016202 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    S. Guan, K. Li, C.-H. Lai, Chaos 16, 023107 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    J. Sun, E.M. Bollt, T. Nishikawa, Europhys. Lett. 85, 60011 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    S. Acharyya, R.E. Amritkar, Europhys. Lett. 99, 40005 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    F. Sorrentino, M. Porfiri, Europhy. Lett. 93, 50002 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Physical Research LaboratoryAhmedabadIndia

Personalised recommendations