Delay-induced cluster patterns in coupled Cayley tree networks

  • A. Singh
  • S. Jalan
Regular Article Complex Networks and Synchronization

Abstract

We study effects of delay in diffusively coupled logistic maps on the Cayley tree networks. We find that smaller coupling values exhibit sensitiveness to value of delay, and lead to different cluster patterns of self-organized and driven types. Whereas larger coupling strengths exhibit robustness against change in delay values, and lead to stable driven clusters comprising nodes from last generation of the Cayley tree. Furthermore, introduction of delay exhibits suppression as well as enhancement of synchronization depending upon coupling strength values. To the end we discuss the importance of results to understand conflicts and cooperations observed in family business.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Danino, O. Mondragón-Palomino, L. Tsimirin, J. Hasty, Nature 462, 326 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    T. Gregor, K. Fujimoto, N. Masaki, S. Sawai, Science 328, 1021 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    S. Jalan, R.E. Amritkar, Phys. Rev. Lett. 90, 014101 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    C. Zhou, L. Zamora, C.C. Hilgetag, J. Kurths, Phys. Rev. Lett. 97, 238103 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    V. Eguiluz, et al., Phys. Rev. E 83, 056113 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    C. Zhou, et al., Phys. Rev. Lett. 97, 238103 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    P. Oikonomou, P. Cluzel, Nature Phys. 2, 532 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    A. Rad, et al., Phys. Rev. Lett. 108, 228701 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    M. Lakshmanan, D. Senthilkumar Dynamics of Nonlinear Time-Delay Systems (Springer Berlin, 2010)Google Scholar
  10. 10.
    H. Haken, Brain Dynamics: Synchronization and Activity Pattern in Pulse-Coupled Neural Nets with Delays and Noise (Springer Verlag GmbH, Berlin, 2006)Google Scholar
  11. 11.
    W. Gerstner, W. Kistler, Spiking Neuron Models (Cambridge University Press, Cambridge, 2002)Google Scholar
  12. 12.
    D. Reddy, et al., Phys. Rev. Lett. 80, 5109 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    N. Punetha, et al., Phys. Rev. E 85, 046204 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    E. Schöll, et al., Phil Trans. R. Soc. A 367, 1079 (2009)ADSMATHCrossRefGoogle Scholar
  15. 15.
    M. Dhamala, et al., Phys. Rev. Lett. 92, 0741404 (2004)Google Scholar
  16. 16.
    F. Atay, et al., Phys. Rev. Lett. 92, 144101 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    M. Shrii, et al., EPL 98, 10003 (2012)CrossRefGoogle Scholar
  18. 18.
    M.K. Sen, et al., J. Stat. Mech. 10 1742 (2010)Google Scholar
  19. 19.
    G. Sethia, et al., Phys. Rev. Lett. 100, 144102 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    S. Jalan, et al., Chaos 16, 033124 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    J. Sheeba, et al., Phys. Rev. E 81, 046203 (2010)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    B. Mensour, A. Longtin, Phys. Lett. A 244, 59 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    T.M. Hoang, IEEE 4, 3 (2010)MathSciNetGoogle Scholar
  24. 24.
    S.J. Schiff, K. Jerger, D.H. Duong, T. Chang, M.L. Spano, W.L. Ditto, Nature (London) 370, 615 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    M.G. Rosenblum, A. Pikovsky, Phys. Rev. Lett. 92 114102 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    O.V. Popovych, C. Hauptmann, P.A. Tass, Phys. Rev. Lett. 94, 164102 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    A. Singh, S. Jalan, J. Kurths (submitted)Google Scholar
  28. 28.
    R. Albert, A.-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    P.M. Gade, H.A. Cerdeira, R. Ramaswamy, Phys. Rev. E 52, 3 (1995)CrossRefGoogle Scholar
  30. 30.
    R.A. van Saten, J. Phys. C: Solid State Phys. 15, L513 (1982)CrossRefGoogle Scholar
  31. 31.
    T. Hasegawa, K. Nemoto, Phys. Rev. E 75, 026105 (2007)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    R.W. Anderson, A.U. Neumann, A.S. Perelson, Bull. Math. Biol. 55, 1091 (1993)MATHGoogle Scholar
  33. 33.
    F. Fidaleo [arXiv:1203.5522v2] (2012)
  34. 34.
    M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 76, 1804 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    F.S. de San Roman, S. Boccaletti, D. Maza, H. Mancini, Phys. Rev. Lett. 81, 3639 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    S. Jalan, R.E. Amritkar, C.K. Hu. Phys. Rev. E 72, 016211 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    R. Owens, Ethnology 10, 223 (1971)CrossRefGoogle Scholar
  38. 38.
    J.L. Ward, S. Waichler, Families Business 20 (2005)Google Scholar
  39. 39.
    D. Denison, C. Lief, J.L. Ward, SAGE 17, 61 (2004)Google Scholar
  40. 40.
    J.L. Ward, Family Business Rev. 13, 271 (2000)MATHCrossRefGoogle Scholar
  41. 41.
    P.Z. Poutziouris, K.X. Smyrnios, S.B. Klein, Handbook of Research on family Business (Edward Elgar Publishing, 2008)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • A. Singh
    • 1
  • S. Jalan
    • 1
  1. 1.Complex Systems LabIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations