Projecting low and extensive dimensional chaos from spatio-temporal dynamics

  • G. Ananthakrishna
  • R. Sarmah
Review Chaos and Applications


We review the spatio-temporal dynamical features of the Ananthakrishna model for the Portevin-Le Chatelier effect, a kind of plastic instability observed under constant strain rate deformation conditions. We then establish a qualitative correspondence between the spatio-temporal structures that evolve continuously in the instability domain and the nature of the irregularity of the scalar stress signal. Rest of the study is on quantifying the dynamical information contained in the stress signals about the spatio-temporal dynamics of the model. We show that at low applied strain rates, there is a one-to-one correspondence with the randomly nucleated isolated bursts of mobile dislocation density and the stress drops. We then show that the model equations are spatio-temporally chaotic by demonstrating the number of positive Lyapunov exponents and Lyapunov dimension scale with the system size at low and high strain rates. Using a modified algorithm for calculating correlation dimension density, we show that the stress-strain signals at low applied strain rates corresponding to spatially uncorrelated dislocation bands exhibit features of low dimensional chaos. This is made quantitative by demonstrating that the model equations can be approximately reduced to space independent model equations for the average dislocation densities, which is known to be low-dimensionally chaotic. However, the scaling regime for the correlation dimension shrinks with increasing applied strain rate due to increasing propensity for propagation of the dislocation bands. The stress signals in the partially propagating to fully propagating bands turn to have features of extensive chaos.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Ananthakrishna, Phys. Rep. 440, 113 (2007)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    D.M. Dimiduk, C. Woodward, R. LeSar, M.D. Uchic, Science 312, 1188 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    A detailed study of this effect is due to F. Le Chatelier, Rev. Métall. 6, 914 (1909)However, the phenomenon was first observed by Savart, F. Savart, Ann. Chim. Phys. Second Ser. 65, 337 (1837)Google Scholar
  4. 4.
    A.H. Cottrell, Dislocations and Plastic Flow in Crystals (University Press, Oxford, 1953)Google Scholar
  5. 5.
    H. Neuhäusser, in Dislocations in Solids, edited by F.R.N. Nabarro, Vol. 6 (North Holland, Amsterdam, 1983)Google Scholar
  6. 6.
    M.A. Lebyodkin, T.A. Lebyodkina, Phys. Rev. E 77, 026111 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    S.J. Noronha, G. Ananthakrishna, L. Quaouire, C. Fressengeas, L.P. Kubin, Int. J. Bif. Chaos 7, 2577 (1997)zbMATHCrossRefGoogle Scholar
  8. 8.
    G. Ananthakrishna, S.J. Naronha, C. Fressengeas, L.P. Kubin, Phys. Rev. E. 60, 5455 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    M.S. Bharathi, M. Lebyodkin, G. Ananthakrishna, C. Fressengeas, L.P. Kubin, Phys. Rev. Lett. 87, 165508 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    M.S. Bharathi, M. Lebyodkin, G. Ananthakrishna, C. Fressengeas, L.P. Kubin, Acta Mater. 50, 2813 (2002)CrossRefGoogle Scholar
  11. 11.
    D. Maugis, M. Barquins, Adhesion, edited by K.W. Allen, Vol. 12 (Elsevier, London, 1988)Google Scholar
  12. 12.
    M. Ciccotti, B. Giorgini, D. Villet, M. Barquins, Int. J. Adhes. 24, 143 (2004)CrossRefGoogle Scholar
  13. 13.
    Rumi De, G. Ananthakrishna, Phys. Rev. Lett. 97, 165503 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    J. Kumar, M. Ciccotti, G. Ananthakrishna, Phys. Rev. E 77, 045202 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    J. Kumar, Rumi De, G. Ananthakrishna, Phys. Rev. E 78, 066119 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Urahama, J. Adhes. 31, 47 (1989)CrossRefGoogle Scholar
  17. 17.
    Y. Yamazaki, A. Toda, Physica D 214, 120 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    J. Dumas, C. Schlenker, J. Marcus, R. Buder, Phys. Rev. Lett. 50, 757 (1983)ADSCrossRefGoogle Scholar
  19. 19.
    J. Dumas, C. Schlenker, Lect. Notes Phys. 217, 439 (1985)ADSCrossRefGoogle Scholar
  20. 20.
    H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 1997)Google Scholar
  21. 21.
    O. Peters, J.D. Neelin, Nature, 2, 393 (2006)Google Scholar
  22. 22.
    M.S. Bharathi, S. Rajesh, G. Ananthakrishna, Scr. Mater. 48, 1355 (2003)CrossRefGoogle Scholar
  23. 23.
    G. Ananthakrishna, M.S. Bharathi, Phys. Rev. E 70, 026111 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    R. Sarmah, G. Ananthakrishna, Phys. Rev. E 86, 056208 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    P. Penning, Acta Metall. 20, 1169 (1972)CrossRefGoogle Scholar
  26. 26.
    A. Van den Beukel, Phys. Stat. Solidi A 30, 197 (1975)ADSCrossRefGoogle Scholar
  27. 27.
    L.P. Kubin, Y. Estrin, Acta. Metall. 33, 397 (1985)CrossRefGoogle Scholar
  28. 28.
    G. Ananthakrishna, M.C. Valsakumar, J. Phys. D 15, L171 (1982)ADSCrossRefGoogle Scholar
  29. 29.
    G. Ananthakrishna, M.C. Valsakumar, Phys. Lett. A 95, 69 (1983)MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    M.S. Bharathi, G. Ananthakrishna, Europhys. Lett. 60, 234 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    M.S. Bharathi, G. Ananthakrishna, Phys. Rev. E 67, 065104 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    G. Benettin, L. Galgani, A. Giorgilli, J.-M. Strelcyn, Meccanica 15, 9 (1980)ADSzbMATHCrossRefGoogle Scholar
  33. 33.
    P. Grassberger, I. Procaccia, Physica D 9, 189 (1983)MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. 34.
    L.A. Smith, Phys. Lett. 133, 283 (1988)CrossRefGoogle Scholar
  35. 35.
    I. Dvořák, J. Klaschka, Phys. Lett. 145, 225 (1990)MathSciNetCrossRefGoogle Scholar
  36. 36.
    J.P. Eckmann, D. Ruelle, Physica D 56, 185 (1992)MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    M. Bauer, H. Heng, W. Martienssen, Phys. Rev. Lett. 71, 521 (1993)ADSCrossRefGoogle Scholar
  38. 38.
    H. Heng, M. Bauer, W. Martienssen, Chaos, Solitons Fractals 2, 197 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    C. Raab, J. Kurths, Phys. Rev. E 64, 016216 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    A.M. Albano, J. Muench, C. Schwartz, A.I. Mees, P.E. Rapp, Phys. Rev. A 38, 3017 (1988)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    J.-P. Eckmann, S.O. Kamphorst, D. Ruelle, S. Ciliberto, Phys. Rev. A 34, 4971 (1986)MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    A. Corana, Phys. Rev. E 62, 7872 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    M. Ding, C. Grebogi, E. Ott, T. Sauer, J.A. Yorke, Phys. Rev. Lett. 70, 3872 (1993)ADSCrossRefGoogle Scholar
  44. 44.
    R. Sarmah, G. Ananthakrishna, Phys. Rev. E 87, 052907 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Materials Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations