The European Physical Journal Special Topics

, Volume 222, Issue 2, pp 511–523

Inferring interdependencies in climate networks constructed at inter-annual, intra-season and longer time scales

Regular Article Applications to Real World Time Series

Abstract

We study global climate networks constructed by means of ordinal time series analysis. Climate interdependencies among the nodes are quantified by the mutual information, computed from time series of monthly-averaged surface air temperature anomalies, and from their symbolic ordinal representation (OP). This analysis allows identifying topological changes in the network when varying the time-interval of the ordinal pattern. We consider intra-season time-intervals (e.g., the patterns are formed by anomalies in consecutive months) and inter-annual time-intervals (e.g., the patterns are formed by anomalies in consecutive years). We discuss how the network density and topology change with these time scales, and provide evidence of correlations between geographically distant regions that occur at specific time scales. In particular, we find that an increase in the ordinal pattern spacing (i.e., an increase in the timescale of the ordinal analysis), results in climate networks with increased connectivity on the equatorial Pacific area. On the contrary, the number of significant links decreases when the ordinal analysis is done with a shorter timescale (by comparing consecutive months), and interpret this effect as due to more stochasticity in the time-series in the short timescale. As the equatorial Pacific is known to be dominated by El Niño-Southern Oscillation (ENSO) on scales longer than several months, our methodology allows constructing climate networks where the effect of ENSO goes from mild (monthly OP) to intense (yearly OP), independently of the length of the ordinal pattern and of the thresholding method employed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 4 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    R. Albert, A.L. Barabasi, Phys. Rev. Lett. 85, 24 (2000)CrossRefGoogle Scholar
  3. 3.
    A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C.S. Zhou, Phys. Rep. 469, 3 (2008)CrossRefGoogle Scholar
  4. 4.
    A. Barrat, M. Barthèlemy, A. Vespignani, Phys. Rev. Lett. 92, 228701 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    S. Bialonski, M.T. Horstmann, K. Lehnertz, Chaos 20, 013134 (2010)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    A.A. Tsonis, P.J. Roebber, Physica A 333, 497 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    A.A. Tsonis, K.L. Swanson, P.J. Roebber, B. Am. Meteorol. Soc. 87, 585 (2006)CrossRefGoogle Scholar
  8. 8.
    K. Steinhaeuser, N.V. Chawla, A.R. Ganguly, Stat. Anal. Data Mining 5, 4 (2011).MathSciNetGoogle Scholar
  9. 9.
    M. Paluš, D. Hartman, J. Hlinka, M. Vejmelka, Nonlinear Proc. Geoph. 18, 751 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Zou, J.F. Donges, J. Kurths, Complex Syst. Complexity Sci. 8, 27 (2011)Google Scholar
  11. 11.
    N. Marwan, J.F. Donges, Y. Zou, R.V. Donner, J. Kurths, Phys. Lett. A 373, 4246 (2009)ADSMATHCrossRefGoogle Scholar
  12. 12.
    R.V. Donner, J.F. Donges, Acta Geophys. 1, 35 (2012)Google Scholar
  13. 13.
    J. Heitzig, J.F. Donges, Y. Zou, N. Marwan, J. Kurths, Eur. Phys. J. B 85, 1 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    J.F. Donges, Y. Zou, N. Marwan, J. Kurths, Eur. Phys. J. Special Topics 174, 157 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    J.F. Donges, Y. Zou, N. Marwan, J. Kurths, Europhys. Lett. 87, 48007 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    J.F. Donges, H.C.H. Schultz, N. Marwan, Y. Zou, J. Kurths, Eur. Phys. J. B 84, 635 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    A. Gozolchiani, S. Havlin, K. Yamasaki, Phys. Rev, Lett. 107, 148501 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    N. Malik, B. Bookhagen, N. Marwan, J. Kurths, Clim. Dynam. 39, 3 (2012)CrossRefGoogle Scholar
  19. 19.
    A.A. Tsonis, K.L. Swanson, Phys Rev. Lett. 100, 228502 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    K. Yamasaki, A. Gozolchiani, S. Havlin, Phys. Rev. Lett. 100, 228501 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Berezin, A. Gozolchiani, O. Guez, S. Havlin Sci. Rep. 2, 666 (2012)ADSGoogle Scholar
  22. 22.
    O. Guez, A. Gozolchiani, Y. Berezin, S. Brenner, S. Havlin, Europhys. Lett. 98, 3 (2012)CrossRefGoogle Scholar
  23. 23.
    A.A. Tsonis, K. Swanson, S. Kravtsov, Geophys. Res. Lett. 34, 13 (2007)CrossRefGoogle Scholar
  24. 24.
    M. Barreiro, A.C. Marti, C. Masoller, Chaos 21, 201 (2011)CrossRefGoogle Scholar
  25. 25.
    C. Bandt, B. Pompe, Phys. Rev. Lett. 88, 174102 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    C. Yinhe, W. Tung, J.B. Gao, V.A. Protopopescu, L.M. Hively, Phys. Rev. E 70, 4 (2004)Google Scholar
  27. 27.
    E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, B. Reynolds, R. Jenne, D. Joseph, B. Am. Meteorol. Soc. 77, 437 (1996)CrossRefGoogle Scholar
  28. 28.
    A. Kraskov, H. Stögbauer, P. Grassberger, Phys. Rev. E 69, 6 (2004)CrossRefGoogle Scholar
  29. 29.
    C.J. Cellucci, A.M. Albano, P.E. Rapp, Phys. Rev. E 71, 6 (2005)CrossRefGoogle Scholar
  30. 30.
    S. Khan, S. Bandyopadhyay, A.R. Ganguly, S. Saigal, D.J. Erickson III, V. Protopopescu, G. Ostrouchov, Phys. Rev. E 76, 026209 (2007)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    M. Paluš, Contemp. Phys. 48, 6 (2007)Google Scholar
  32. 32.
    J.C.H. Chiang, A.H. Sobel, J. Climate 15, 2616 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    M. Barreiro, P. Chang, L. Ji, R. Saravanan, A. Giannini, Dynam. Atmos. Oceans 39, 1 (2005)CrossRefGoogle Scholar
  34. 34.
    Q. Ding, E.J. Steig, D.S. Battisti, M. Küttel, Nature Geosci. 4, 6 (2011)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Departament de Física i Enginyeria Nuclear, Universitat Politècnica de CatalunyaTerrassa, BarcelonaSpain
  2. 2.Instituto de Física, Facultad de Ciencias, Universidad de la RepúblicaMontevideoUruguay

Personalised recommendations