The European Physical Journal Special Topics

, Volume 222, Issue 2, pp 473–485 | Cite as

Quantitative characterisation of audio data by ordinal symbolic dynamics

  • T. Aschenbrenner
  • R. Monetti
  • J.M. Amigó
  • W. Bunk
Regular Article Applications to Real World Time Series

Abstract

Ordinal symbolic dynamics has developed into a valuable method to describe complex systems. Recently, using the concept of transcripts, the coupling behaviour of systems was assessed, combining the properties of the symmetric group with information theoretic ideas. In this contribution, methods from the field of ordinal symbolic dynamics are applied to the characterisation of audio data. Coupling complexity between frequency bands of solo violin music, as a fingerprint of the instrument, is used for classification purposes within a support vector machine scheme. Our results suggest that coupling complexity is able to capture essential characteristics, sufficient to distinguish among different violins.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Bandt, B. Pompe, Phys. Rev. Lett. 88, 174102 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    R. Monetti, W. Bunk, T. Aschenbrenner, F. Jamitzky, Phys. Rev. E 79, 046207 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Amigó, R. Monetti, T. Aschenbrenner, W. Bunk, Chaos 22, 013105 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    R. Monetti, J.M. Amigó, T. Aschenbrenner, W. Bunk, Eur. Phys. J. Special Topics 222, 421 (2013)CrossRefGoogle Scholar
  5. 5.
    H. von Helmholtz, Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik (Vieweg & Sohn, Braunschweig, 1913)Google Scholar
  6. 6.
    J.C. Schelleng, Scientific American, 87 (1973)Google Scholar
  7. 7.
    G. Bissinger, J. Acoust. Soc. Amer. 120, 482 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    M. Schleske, Catgut Acoust. Soc. J. 4, 50 (2002)Google Scholar
  9. 9.
    T. Kinnunen, Spectral Features Automatic Text-Independent Speaker Recognition, Licentiate’s Thesis, University of Joensuu, Finland, 2003Google Scholar
  10. 10.
    C.-C. Chang, C.-J. Lin, ACM Trans. Intell. Syst. Technol. 2, 27:1 (2011)Google Scholar
  11. 11.
    C.-W. Hsu, C.-C. Chang, C.-J. Lin, A practical guide to support vector classification, http://www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.pdf (2010)
  12. 12.
    R. Ricci, N. Shiozaki, The Legacy of Cremona – Ruggiero Ricci plays 18 Contemporary Violins (CD), Dynamic, Genoa (2001)Google Scholar
  13. 13.
    S. Gawriloff, K. Ratner, What about this, Mr. Paganini? (CD), Tacet Musikproduktion, Stuttgart (1995)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • T. Aschenbrenner
    • 1
  • R. Monetti
    • 1
  • J.M. Amigó
    • 2
  • W. Bunk
    • 1
  1. 1.Max-Planck-Institut für extraterrestrische PhysikGarchingGermany
  2. 2.Centro de Investigación Operativa, Universidad Miguel HernandezElcheSpain

Personalised recommendations