Advertisement

Numerical simulation of continuum models for fluid-fluid interface dynamics

  • S. Gross
  • A. Reusken
Review

Abstract

This paper is concerned with numerical methods for two-phase incompressible flows assuming a sharp interface model for interfacial stresses. Standard continuum models for the fluid dynamics in the bulk phases, for mass transport of a solute between the phases and for surfactant transport on the interface are given. We review some recently developed finite element methods for the appropriate discretization of such models, e. g., a pressure extended finite element (XFE) space which is suitable to represent the pressure jump, a space-time extended finite element discretization for the mass transport equation of a solute and a surface finite element method (SurFEM) for surfactant transport. Numerical experiments based on level set interface capturing and adaptive multilevel finite element discretization are presented for rising droplets with a clean interface model and a spherical droplet in a Poisseuille flow with a Boussinesq-Scriven interface model.

Keywords

European Physical Journal Special Topic Element Space Interface Stress Interface Force Sharp Interface Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Aland, J. Lowengrub, A. Voigt, Phys. Fluids 23, 062103 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    D. Anderson, G. McFadden, A. Wheeler, Annu. Rev. Fluid Mech. 30, 139 (1998)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    R. Aris, Vectors, tensors, and the basic equations of fluid mechanics (Dover Publications, 1989)Google Scholar
  4. 4.
    T. Belytschko, N. Moës, S. Usui, C. Parimi, Int. J. Numer. Meth. Eng. 50, 993 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    E. Bertakis, S. Groß, J. Grande, O. Fortmeier, A. Reusken, A. Pfennig, Chem. Eng. Sci. 65, 2037 (2010)CrossRefGoogle Scholar
  6. 6.
    DROPS package for simulation of two-phase flows, http://www.igpm.rwth-aachen.de/DROPS/Google Scholar
  7. 7.
    G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, edited by S. Hildebrandt and R. Leis, Partial differential equations and calculus of variations, Vol. 1357, Lecture Notes in Mathematics (Springer, 1988), p. 142Google Scholar
  8. 8.
    G. Dziuk, C. Elliott, IMA J. Numer. Anal. 27, 262 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    T. Fries, T. Belytschko, Int. J. Numer. Meth. Eng. 84, 253 (2010)MathSciNetzbMATHGoogle Scholar
  10. 10.
    T.-P. Fries, A. Zilian, N. Mös (eds.), Special Issue: Extended Finite Element Method, Int. J. Numer. Meth. Eng. 86, 403 (2011)Google Scholar
  11. 11.
    G. Fuller, J. Vermant, Annu Rev. Chem. Biomol. Eng. 3, 519 (2012)CrossRefGoogle Scholar
  12. 12.
    G.G. Fuller, Rheology Rev. 2003, 77 (2003)Google Scholar
  13. 13.
    S. Groß, A. Reusken, SIAM J. Numer. Anal. 45, 1679 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    S. Gross, A. Reusken, Numerical Methods for Two-phase Incompressible Flows (Springer, Heidelberg, 2011)Google Scholar
  15. 15.
    C. Lehrenfeld, A. Reusken, SIAM J. Numer. Anal. 51, 958 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    R. Miller, L. Liggieri (eds.), Interfacial Rheology, Progr. Coll. Interf. Sci. (Brill, Bedfordshire, 2009)Google Scholar
  17. 17.
    N. Moës, J. Dolbow, T. Belytschko, Int. J. Numer. Meth. Eng. 46, 131 (1999)zbMATHCrossRefGoogle Scholar
  18. 18.
    M. Olshanskii, A. Reusken, J. Grande, SIAM J. Numer. Anal. 47, 3339 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, Vol. 153 (Springer, Berlin, Heidelberg, New York, 2003)Google Scholar
  20. 20.
    L. Rayleigh, Phil. Mag. 30, 209 (1892)Google Scholar
  21. 21.
    A. Reusken, Y. Zhang, Numerical simulation of incompressible two-phase flows with a Boussinesq-Scriven interface stress. Technical Report 345, IGPM, RWTH-Aachen, 2012Google Scholar
  22. 22.
    L. Sagis, Rev. Mod. Phys. 83, 1367 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    L. Sagis, Eur. Phys. J. Special Topics 222, 105 (2013)Google Scholar
  24. 24.
    J.T. Schwalbe, F.R. Phelan Jr., P.M. Vlahovska, S.D. Hudson, Soft Matter 7, 7797 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    J. Sethian, Level Set Methods and Fast Marching Methods (Cambridge University Press, 1999)Google Scholar
  26. 26.
    J. Slattery, L. Sagis, E.-S. Oh, Interfacial Transport Phenomena, second edition (Springer, New York, 2007)Google Scholar
  27. 27.
    K. Teigen, X. Li, J. Lowengrub, F. Wang, A. Voigt, Comm. Math. Sci. 7, 1009 (2009)MathSciNetzbMATHGoogle Scholar
  28. 28.
    K. Teigen, P. Song, J. Lowengrub, A. Voigt, A diffusive-interface method for two-phase flows with soluble surfactants. Technical report, Department of Mathematics, TU-Dresden (2010)Google Scholar
  29. 29.
    V. Thomee, Galerkin Finite Element Methods for Parabolic Problems (Springer, Berlin, 1997)Google Scholar
  30. 30.
    G. Tryggvason, R. Scardovelli, S. Zaleski, Direct Numerical Simulations of Gas-Liquid Multiphase Flows (Cambridge University Press, Cambridge, 2011)Google Scholar
  31. 31.
    J. Van der Waals, J. Stat. Phys. 20, 197 (1893)MathSciNetGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Institut für Geometrie und Praktische Mathematik, RWTH-AachenAachenGermany

Personalised recommendations