The European Physical Journal Special Topics

, Volume 222, Issue 1, pp 177–198

Numerical simulations of complex fluid-fluid interface dynamics

Review

DOI: 10.1140/epjst/e2013-01834-y

Cite this article as:
Krüger, T., Frijters, S., Günther, F. et al. Eur. Phys. J. Spec. Top. (2013) 222: 177. doi:10.1140/epjst/e2013-01834-y

Abstract

Interfaces between two fluids are ubiquitous and of special importance for industrial applications, e.g., stabilisation of emulsions. The dynamics of fluid-fluid interfaces is difficult to study because these interfaces are usually deformable and their shapes are not known a priori. Since experiments do not provide access to all observables of interest, computer simulations pose attractive alternatives to gain insight into the physics of interfaces. In the present article, we restrict ourselves to systems with dimensions comparable to the lateral interface extensions. We provide a critical discussion of three numerical schemes coupled to the lattice Boltzmann method as a solver for the hydrodynamics of the problem: (a) the immersed boundary method for the simulation of vesicles and capsules, the Shan-Chen pseudopotential approach for multi-component fluids in combination with (b) an additional advection-diffusion component for surfactant modelling and (c) a molecular dynamics algorithm for the simulation of nanoparticles acting as emulsifiers.

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Department of Applied PhysicsEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Institute for Computational Physics, University of StuttgartStuttgartGermany
  3. 3.Centre for Computational Science, University College LondonLondonUK

Personalised recommendations