A fixture for interfacial dilatational rheometry using a rotational rheometer

  • T. Verwijlen
  • P. Moldenaers
  • J. VermantEmail author
Regular Article


In characterizing complex fluid-fluid interfaces, interfacial rheometry has become an important tool to indirectly probe the interfacial microstructure and molecular interactions. It can also be useful to obtain the constitutive properties of an interface for calculating the interfacial flows of complex fluid-fluid interfaces. A number of devices for measuring interfacial shear rheology have been designed and have been thoroughly validated. However, although a range of devices for measuring interfacial dilatational rheology exist, they do not always allow for a proper separation of the effects of dynamic surface tension, curvature elasticity, Marangoni stresses, bulk flow effects and the desired dilatational rheological material functions. In the present work it is investigated if a fixture for a standard rotational rheometer can be designed which probes the dilatational viscoelastic properties of a planar complex fluid-fluid interface. A modification of the double wall ring geometry for shear rheometry is proposed, which creates a mixed but analyzable flow field. The use of a mixed flow field inherently limits the sensitivity for the dilatational properties, but some advantages over existing techniques are presented, in particular for insoluble monolayers. More importantly, the analysis illustrate some generic aspects on the use of mixed interfacial flow fields for measuring the surface rheological properties.


European Physical Journal Special Topic Interfacial Stress Dynamic Surface Tension Hexadecanol Wilhelmy Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.G. Fuller, J. Vermant, Soft Matter 7, 7583 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    P. Erni, Soft Matter 7, 7586 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    L.M.C. Sagis, Rev. Mod. Phys. 83, 1367 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    G.G. Fuller, J. Vermant, Annu. Rev. Chem. Biomol. Eng. 3, 519 (2012)CrossRefGoogle Scholar
  5. 5.
    C. Alonso, A. Waring, and J.A. Zasadzinski, Biophys. J. 89, 266 (2005)CrossRefGoogle Scholar
  6. 6.
    D.L. Leiske, C.I. Leiske, D.R. Leiske, M.F. Toney, M. Senchyna, H.A. Ketelson, D.L. Meadows, G.G. Fuller, Biophys. J. 102, 369 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    P.J. Martin, K.N. Odic, A.B. Russell, I.W. Burns, D.I. Wilson, Appl. Rheology 18, 12913-1 (2008)Google Scholar
  8. 8.
    D. Langevin, Adv. Coll. Interf. Sci. 323, 209 (2000)CrossRefGoogle Scholar
  9. 9.
    H.W. Yarranton, P. Urrutia, D.M. Sztukowski, J. Coll. Interf. Sci. 310, 253 (2007)CrossRefGoogle Scholar
  10. 10.
    M.B.J. Meinders, T. van Vliet, Adv. Coll. Interf. Sci. 108, 119 (2004)CrossRefGoogle Scholar
  11. 11.
    L. Wilhelmy, Annal. Phys. Chem. 119, 177 (1863)CrossRefGoogle Scholar
  12. 12.
    H.-J. Butt, K. Graf, M. Kappl, Physics and chemistry of interfaces (Wiley-VCH, Weinheim, 2003)Google Scholar
  13. 13.
    F. Bashforth, J.C. Adams, An attempt to test the theories of capillary action (Cambridge University Press, London, 1883)Google Scholar
  14. 14.
    S.M.I. Saad, Z. Policova, A.W. Neumann, Coll. Surf. A-Physicochem. Eng. Aspects 384, 442 (2011)CrossRefGoogle Scholar
  15. 15.
    B. Vonnegut, Rev. Sci. Instrum. 13, 6 (1942)ADSCrossRefGoogle Scholar
  16. 16.
    S.-G. Oh, J.C. Slattery, J. Coll. Interf. Sci. 67, 516 (1978)CrossRefGoogle Scholar
  17. 17.
    P. Erni, P. Fischer, E.J. Windhab, V. Kusnezov, H. Stettin, J. Läuger, Rev. Scientif. Instr. 74, 4916 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    S. Reynaert, C.F. Brooks, P. Moldenaers, J. Vermant, G.G. Fuller, J. Rheol. 52, 261 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    S. Vandebril, A. Franck, G.G. Fuller, P. Moldenaers, J. Vermant, Rheol. Acta 49, 131 (2009)CrossRefGoogle Scholar
  20. 20.
    T. Verwijlen, P. Moldenaers, H.A. Stone, J. Vermant, Langmuir 27, 9345 (2011)CrossRefGoogle Scholar
  21. 21.
    C.F. Brooks, G.G. Fuller, C.W. Frank, C.R. Robertson, Langmuir 15, 2450 (1999)CrossRefGoogle Scholar
  22. 22.
    S.Q. Choi, S. Steltenkamp, J.A. Zasadzinski, T.M. Squires, Nat. Comm. 2, 312 (2011)CrossRefGoogle Scholar
  23. 23.
    L. Imperiali, K.H. Liao, C. Clasen, J. Fransaer, C.W. Macosko, J. Vermant, Langmuir 28, 7990 (2012)CrossRefGoogle Scholar
  24. 24.
    D.B. Jones, A.P.J. Middelberg, Chem. Eng. Sci. 57, 1711 (2002)CrossRefGoogle Scholar
  25. 25.
    T. Verwijlen, D.L. Leiske, P. Moldenaers, J. Vermant, G.G. Fuller, J. Rheol. 56, 1225 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    F. Ravera, G. Loglio, V.I. Kovalchuk, Curr. Opinion Coll. Interf. Sci. 15, 217 (2010)CrossRefGoogle Scholar
  27. 27.
    S.C. Russev, N. Alexandrov, K.G. Marinova, K.D. Danov, N.D. Denkov, L. Lyutov, V. Vulchev, C. Bilke-Krause, Rev. Scientif. Instr. 79, 104102 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    A.A. Badran, E. Marschall, Rev. Scientif. Instr. 57, 259 (1986)ADSCrossRefGoogle Scholar
  29. 29.
    L. Seta, N. Baldino, D. Gabriele, F.R. Lupi, B. de Cindio, Food Hydrocoll. 29, 247 (2012)CrossRefGoogle Scholar
  30. 30.
    E.V. Aksenenko, V.I. Kovalchuk, V.B. Fainerman, R. Miller, J. Phys. Chem. C 111, 14713 (2007)CrossRefGoogle Scholar
  31. 31.
    A. Stocco, W. Drenckhan, E. Rio, D. Langevin, B.P. Binks, Soft Matter 5, 2215 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    N.A. Alexandrov, K.G. Marinova, T.D. Gurkov, K.D. Danov, P.A. Kralchevsky, S.D. Stoyanov, T.B.J. Blijdenstein, L.N. Arnaudov, E.G. Pelan, A. Lips, J. Coll. Interf. Sci. 376, 296 (2012)CrossRefGoogle Scholar
  33. 33.
    A. Javadi, J.K. Ferri, Th. D. Karapantsios, R. Miller, Coll. Surf. A: Physicochem. Eng. Aspects 365, 145 (2010)CrossRefGoogle Scholar
  34. 34.
    M. Karbaschi, D. Bastani, A. Javadi, V.I. Kovalchuk, N.M. Kovalchuk, A.V. Makievski, E. Bonaccurso, R. Miller, Coll. Surf. A: Physicochem. Eng. Aspects 413, 292 (2012)CrossRefGoogle Scholar
  35. 35.
    D. Carvajal, E.J. Laprade, K.J. Henderson, K.R. Shull, Soft Matter 7, 10508 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    J.T. Petkov, T.D. Gurkov, B.E. Campbell, R.P. Borwankar, Langmuir 16, 3703 (2000)CrossRefGoogle Scholar
  37. 37.
    P. Cicuta, E.M. Terentjev, Eur. Phys. J. E 16, 147 (2005)CrossRefGoogle Scholar
  38. 38.
    S.R. Derkach, J. Krägel, R. Miller, Coll. J. 71, 1 (2009)CrossRefGoogle Scholar
  39. 39.
    E. Aumaitre, D. Vella, P. Cicuta, Soft Matter 7, 2530 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    G. Kretzschmar, J. Li, R. Miller, H. Motschmann, H. Möhwald, Coll. Surf. A: Physicochem. Eng. Aspects 114, 277 (1996)CrossRefGoogle Scholar
  41. 41.
    L. Liggieri, R. Miller, Curr. Opinion Coll. Interf. Sci. 15, 256 (2010)CrossRefGoogle Scholar
  42. 42.
    R. Miller, P. Joos, V.B. Fainerman, Adv. Coll. Interf. Sci. 49, 249 (1994)CrossRefGoogle Scholar
  43. 43.
    F. Ravera, G. Loglio, P. Pandolfini, E. Santini, L. Liggieri, Coll. Surf. A: Physicochem. Eng. Aspects 365, 2 (2010)CrossRefGoogle Scholar
  44. 44.
    N.J. Alvarez, S.L. Anna, T. Saigal, R.D. Tilton, L.M. Walker, Langmuir 28, 8052 (2012)CrossRefGoogle Scholar
  45. 45.
    N.J. Alvarez, L.M. Walker, S.L. Anna, Langmuir 26, 13310 (2010)CrossRefGoogle Scholar
  46. 46.
    N.J. Alvarez, L.M. Walker, S.L. Anna, Phys. Rev. E 82, 011604 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    N.J. Alvarez, D.R. Vogus, L.M. Walker, S.L. Anna, J. Coll. Interf. Sci. 372, 183 (2012)CrossRefGoogle Scholar
  48. 48.
    N.J. Alvarez, L.M. Walker, S.L. Anna, Soft Matter 8, 8917 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    T.A. Witten, J. Wang, L. Pocivavsek, K.Y.C. Lee, J. Chem. Phys. 132, 046102 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    L.E. Scriven, Chem. Eng. Sci. 12, 98 (1960)CrossRefGoogle Scholar
  51. 51.
    L.D. Landau, E.M. Lifshitz, Theory of elasticity (Pergamon Press, Oxford, 1984)Google Scholar
  52. 52.
    D.A. Edwards, H. Brenner, D.T. Wasan, Interfacial transport processes and rheology (Butterworth-Heinemann, Boston, 1991)Google Scholar
  53. 53.
    M. Stepanova, Biophys. J. 96, 4896 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    P. Erni, P. Fischer, E.J. Windhab, Langmuir 21, 10555 (2005)CrossRefGoogle Scholar
  55. 55.
    J. Lucassen, M. van den Tempel, Chem. Eng. Sci. 27, 1283 (1972)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKU Leuven, University of LeuvenLeuvenBelgium

Personalised recommendations