Advertisement

Characterization methods for liquid interfacial layers

  • A. Javadi
  • N. Mucic
  • M. Karbaschi
  • J.Y. Won
  • M. Lotfi
  • A. Dan
  • V. Ulaganathan
  • G. Gochev
  • A.V. Makievski
  • V.I. Kovalchuk
  • N.M. Kovalchuk
  • J. Krägel
  • R. Miller
Review

Abstract

Liquid interfaces are met everywhere in our daily life. The corresponding interfacial properties and their modification play an important role in many modern technologies. Most prominent examples are all processes involved in the formation of foams and emulsions, as they are based on a fast creation of new surfaces, often of an immense extension. During the formation of an emulsion, for example, all freshly created and already existing interfaces are permanently subject to all types of deformation. This clearly entails the need of a quantitative knowledge on relevant dynamic interfacial properties and their changes under conditions pertinent to the technological processes. We report on the state of the art of interfacial layer characterization, including the determination of thermodynamic quantities as base line for a further quantitative analysis of the more important dynamic interfacial characteristics. Main focus of the presented work is on the experimental possibilities available at present to gain dynamic interfacial parameters, such as interfacial tensions, adsorbed amounts, interfacial composition, visco-elastic parameters, at shortest available surface ages and fastest possible interfacial perturbations. The experimental opportunities are presented along with examples for selected systems and theoretical models for a best data analysis. We also report on simulation results and concepts of necessary refinements and developments in this important field of interfacial dynamics.

Keywords

Foam Interfacial Tension Capillary Pressure European Physical Journal Special Topic Dynamic Surface Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Simon, Ann. Chim. Phys. 32, 5 (1851)Google Scholar
  2. 2.
    J. Kloubek, J. Colloid Interface Sci. 41, 7 (1972)CrossRefGoogle Scholar
  3. 3.
    K.J. Mysels, Colloid Surfaces 43, 241 (1990)CrossRefGoogle Scholar
  4. 4.
    V.B. Fainerman, Colloids Surfaces 62, 333 (1992)CrossRefGoogle Scholar
  5. 5.
    J. Meissner, J. Krgel, C. Frese, S. Rupert, V.B. Fainerman, A.V. Makievski, R. Miller, SÖFW-Journal (English Version) 130, 41 (2004)Google Scholar
  6. 6.
    V.B. Fainerman, A.V. Makievski, R. Miller, Rev. Sci. Instruments 75, 213 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    V.B. Fainerman, R. Miller, Maximum bubble pressure tensiometry: theory, analysis of experimental constrains and applications, in Bubble and Drop Interfaces, Vol. 2, Progress in Colloid and Interface Science, edited by R. Miller and L. Liggieri (Brill Publ., Leiden, 2011), p. 75Google Scholar
  8. 8.
    V.B. Fainerman, R. Miller, Adv. Colloid Interface Sci. 108-109, 287 (2004)CrossRefGoogle Scholar
  9. 9.
    V.B. Fainerman, R. Miller, J. Colloid Interface Sci. 175, 118 (1995)CrossRefGoogle Scholar
  10. 10.
    V.B. Fainerman, V.D. Mys, A.V. Makievski, J.T. Petkov, R. Miller, J. Colloid Interface Sci. 302, 40 (2006)CrossRefGoogle Scholar
  11. 11.
    M. Ueno, Y. Takasawa, H. Miyashige, Y. Tabata, K. Meguro, Colloid Polymer Sci. 259, 761 (1981)CrossRefGoogle Scholar
  12. 12.
    K.D. Danov, P.A. Kralchevsky, N.D. Denkov, K.P. Ananthapadmanabhan, A. Lips, Adv. Colloid Interface Sci. 119, 1 (2006)CrossRefGoogle Scholar
  13. 13.
    V. Ulaganathan, V.B. Fainerman, G. Gochev, E.V. Aksenenko, C. Gehin-Delval, R. Miller, Colloids Surfaces A (in press) (2012)Google Scholar
  14. 14.
    N. Mucic, A. Javadi, N.M. Kovalchuk, R. Miller, Adv. Colloid Interface Sci. 168, 167 (2011)CrossRefGoogle Scholar
  15. 15.
    G. Loglio, P. Pandolfini, L. Liggieri, A.V. Makievski, F. Ravera, Determination of Interfacial Properties by the Pendant Drop Tensiometry: Optimisation of Experimental and Calculation Procedures, in Bubble and Drop Interfaces, Vol. 2, Progress in Colloid and Interface Science, edited by R. Miller and L. Liggieri (Brill Publ., Leiden, 2011), p. 7Google Scholar
  16. 16.
    C. Maze, G. Burnet, Surface Sci. 13, 451 (1969)ADSCrossRefGoogle Scholar
  17. 17.
    S.A. Zholob, A.V. Makievski, R. Miller, V.B. Fainerman, Advances in calculation methods for the determination of surface tensions in drop profile analysis tensiometry, in Bubble and Drop Interfaces, Vol. 2, Progress in Colloid and Interface Science, edited by R. Miller and L. Liggieri (Brill Publ., Leiden, 2011), p. 39Google Scholar
  18. 18.
    A. Passerone, L. Liggieri, N. Rando, F. Ravera, E. Ricci, J. Colloid Interface Sci. 146, 152 (1991)CrossRefGoogle Scholar
  19. 19.
    A. Javadi, J. Krgel, P. Pandolfini, G. Loglio, V.I. Kovalchuk, E. Aksenenko, F. Ravera, L. Liggieri, R. Miller, Colloids Surfaces A 365, 62 (2010)CrossRefGoogle Scholar
  20. 20.
    A. Javadi, J. Krgel, A.V. Makievski, N.M. Kovalchuk, V.I. Kovalchuk, N. Mucic, G. Loglio, P. Pandolfini, M. Karbaschi, R. Miller, Colloids Surfaces A 407, 159 (2012)CrossRefGoogle Scholar
  21. 21.
    G. Kretzschmar, K. Lunkenheimer, Ber. Bunsenges. Phys. Chem. 74, 1064 (1970)Google Scholar
  22. 22.
    B.A. Noskov, Capillary waves in interfacial rheology, in Interfacial Rheology, Vol. 1, Progress in Colloid and Interface Science, edited by R. Miller and L. Liggieri (Brill Publ., Leiden, 2009), p. 103Google Scholar
  23. 23.
    J.W. Gibbs, The Collected Works of J.W. Gibbs (Yale University Press, New Haven, Connecticut USA, 1928)Google Scholar
  24. 24.
    R. Miller, R. Sedev, K.-H. Schano, Ch. Ng, A.W. Neumann, Colloids Surfaces A 69, 209 (1993)CrossRefGoogle Scholar
  25. 25.
    J. Benjamins, A. Cagna, E.H. Lucassen-Reynders. Colloids Surfaces A 114, 245 (1996)CrossRefGoogle Scholar
  26. 26.
    K. Lunkenheimer, G. Kretzschmar, Z. Phys. Chem. (Leipzig) 256, 593 (1975)Google Scholar
  27. 27.
    H. Fruhner, K.-D. Wantke, Colloids Surfaces A 114, 53 (1996)CrossRefGoogle Scholar
  28. 28.
    G. Loglio, U. Tesei, R. Cini, Colloid Polymer Sci. 264, 712 (1986)CrossRefGoogle Scholar
  29. 29.
    J. Lucassen, M. van den Tempel, Chem. Eng. Sci. 27, 1283 (1972)CrossRefGoogle Scholar
  30. 30.
    E.H. Lucassen-Reynders, J. Lucassen, Adv. Colloid Interface Sci. 2, 347 (1969)CrossRefGoogle Scholar
  31. 31.
    V.I. Kovalchuk, J. Krgel, A.V. Makievski, G. Loglio, F. Ravera, L. Liggieri, R. Miller, J. Colloid Interface Sci. 252, 433 (2002)CrossRefGoogle Scholar
  32. 32.
    V.I. Kovalchuk, J. Krgel, A.V Makievski., L. Liggieri, F. Ravera, G. Loglio, V.B. Fainerman, R. Miller, J. Colloid Interface Sci. 280, 498 (2004)CrossRefGoogle Scholar
  33. 33.
    A. Prosperetti, Phys. Fluids 16, 1852 (2004)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    A.N. Frumkin, V.G. Levich, Zh. Phys. Chim. 21, 1183 (1947)Google Scholar
  35. 35.
    V.G. Levich, 1962, Physicochemical Hydrodynamics (Englewood Cliffs, N.J.: Prentice-Hall)Google Scholar
  36. 36.
    K. Malysa, M. Krasowska, M. Krzan, Adv. Colloid Interface Sci. 114-115, 205 (2005)CrossRefGoogle Scholar
  37. 37.
    S.S. Dukhin, R. Miller, G. Loglio, 1998, Physico-chemical hydrodynamics of rising bubble. in Studies in Interface Science, Vol. 6 (Elsevier)Google Scholar
  38. 38.
    K. Malysa, J. Zawala, M. Krzan, M. Krasowska , Bubbles Rising in Solutions; Local and Terminal Velocities, Shape Variations and Collisions with Free Surface, Progress Colloid Interface Science, Vol. 2 (Brill, 2011), p. 243Google Scholar
  39. 39.
    J.S. Hadamard, Acad. Sci., Paris, C. R. 152, 1735 (1911)zbMATHGoogle Scholar
  40. 40.
    W. Rybczynski, Bull. Acad. Sci. Cracow A40, 40 (1911)Google Scholar
  41. 41.
    M. Krzan, K. Malysa, Colloids Surfaces A 207, 279 (2002)CrossRefGoogle Scholar
  42. 42.
    M. Krzan, K. Lunkenheimer, K. Malysa, Colloids Surfaces A 250, 431 (2004)CrossRefGoogle Scholar
  43. 43.
    M. Krzan, J. Zawala, K. Malysa, Colloids Surfaces A 298, 42 (2007)CrossRefGoogle Scholar
  44. 44.
    J. Zawala, K. Swiech, K. Malysa, Colloids Surfaces A 302, 293 (2007)CrossRefGoogle Scholar
  45. 45.
    M.A. Cabrerizo-Vilchez, H.A. Wege, J.A. Holgado-Terriza, A.W. Neumann, Rev. Sci. Instrum. 70, 2438 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    J.K. Ferri, Cs. Kotsmar, R. Miller, Adv. Colloid Interface Sci. 161, 29 (2010)CrossRefGoogle Scholar
  47. 47.
    A. Javadi, J.K. Ferri, T.D. Karapantsios, R. Miller, Colloids Surfaces A 365, 145 (2010)CrossRefGoogle Scholar
  48. 48.
    A. Javadi, M. Karbaschi, D. Bastani, J. Ferri, V.I. Kovalchuk, N.M. Kovalchuk, K. Javadi, R. Miller, Colloids Surfaces A, doi:10.1016/j.colsurfa.2012.10.032Google Scholar
  49. 49.
    V.B. Fainerman, R. Miller, J.K. Ferri, H. Watzke, M.E. Leser, M. Michel, Adv. Colloid Interface Sci. 123-126, 163 (2006)CrossRefGoogle Scholar
  50. 50.
    J.Y. Won, J. Krgel, A.V. Makievski, A. Javadi, G. Gochev, G. Loglio, P. Pandolfini, M.E. Leser, C. Gehin-Delval, R. Miller, Colloids Surfaces A (submitted)Google Scholar
  51. 51.
    GabrieliR. , LoglioG. , PandolfiniP. , FabbriA. , SimonciniM. , KovalchukV.I. , NoskovB.A. , MillerR. , RaveraF. , L.Liggieri, Colloids Surfaces A 413, 101 (2012)CrossRefGoogle Scholar
  52. 52.
    K. Dieter-Kissling, M. Karbaschi, H. Marschall, A. Javadi, R. Miller, D. Bothe, Colloids Surfaces A, doi10.1016/j.colsurfa.2012.10.047Google Scholar
  53. 53.
    M.E. Leser, S. Acquistapace, A. Cagna, A.V. Makievski, R. Miller, Colloids Surfaces A 261, 25 (2005)CrossRefGoogle Scholar
  54. 54.
    M. Karbaschi, A. Javadi, D. Bastani, VI. Kovalchuk, N.M. Kovalchuk, A.V. Makievski, E. Bonaccurso, R. Miller, Colloids Surfaces A 413, 292 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • A. Javadi
    • 1
  • N. Mucic
    • 1
  • M. Karbaschi
    • 1
    • 2
  • J.Y. Won
    • 1
  • M. Lotfi
    • 2
  • A. Dan
    • 1
  • V. Ulaganathan
    • 1
  • G. Gochev
    • 1
  • A.V. Makievski
    • 3
  • V.I. Kovalchuk
    • 4
  • N.M. Kovalchuk
    • 4
  • J. Krägel
    • 1
  • R. Miller
    • 1
  1. 1.Max-Planck-Institute of Colloids & InterfacesPotsdam/GolmGermany
  2. 2.Sharif University of TechnologyTeheranIran
  3. 3.SINTERFACE TechnologiesBerlinGermany
  4. 4.Institute of Biocolloid ChemistryKievUkraine

Personalised recommendations