Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 5, pp 853–891 | Cite as

Is it the shape of the cavity, or the shape of the water in the cavity?

  • Phillip W. Snyder
  • Matthew R. Lockett
  • Demetri T. Moustakas
  • George M. Whitesides
Review
Part of the following topical collections:
  1. Discussion and Debate: Water Complexity — More than a Myth?

Abstract

Historical interpretations of the thermodynamics characterizing biomolecular recognition have marginalized the role of water. An important (even, perhaps, dominant) contribution to molecular recognition in water comes from the “hydrophobic effect,” in which non-polar portions of a ligand interact preferentially with non-polar regions of a protein. Water surrounds the ligand, and water fills the binding pocket of the protein: when the protein-ligand complex forms, and hydrophobic surfaces of the binding pocket and the ligand approach one another, the molecules (and hydrogen-bonded networks of molecules) of water associated with both surfaces rearrange and, in part, entirely escape into the bulk solution. It is now clear that neither of the two most commonly cited rationalizations for the hydrophobic effect—an entropy-dominated hydrophobic effect, in which ordered waters at the surface of the ligand, and water at the surface of the protein, are released to the bulk upon binding, and a “lock-and-key” model, in which the surface of a ligand interacts directly with a surface of a protein having a complementary shape–can account for water-mediated interactions between the ligand and the protein, and neither is sufficient to account for the experimental observation of both entropy- andenthalpy-dominated hydrophobic effects. What is now clear is that there is no single hydrophobic effect, with a universally applicable, common, thermodynamic description: different processes (i.e., partitioning between phases of different hydrophobicity, aggregation in water, and binding) with different thermodynamics, depend on the molecular-level details of the structures of the molecules involved, and of the aggregates that form. A “water-centric” description of the hydrophobic effect in biomolecular recognition focuses on the structures of water surrounding the ligand, and of water filling the binding pocket of the protein, both before and after binding. This view attributes the hydrophobic effect to changes in the free energy of the networks of hydrogen bonds that are formed, broken, or re-arranged when two hydrophobic surfaces approach (but do not necessarily contact) one another. The details of the molecular topography (and the polar character) of the mole- cular surfaces play an important role in determining the structure of these networks of hydrogen-bonded waters, and in the thermodynamic description of the hydrophobic effect(s). Theorists have led the formulation of this “water-centric view”, although experiments are now supplying support for it. It poses complex problems for would-be “designers” of protein-ligand interactions, and for so-called “rational drug design”.

Keywords

Free Energy Carbonic Anhydrase European Physical Journal Special Topic Binding Pocket Bulk Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.S. Frank, M.W. Evans, J. Chem. Phys. 33, 507 (1945)ADSGoogle Scholar
  2. 2.
    W. Kauzmann, Adv. Prot. Chem. 14, 1 (1959)Google Scholar
  3. 3.
    C. Tanford, Science 200, 1012 (1978)ADSGoogle Scholar
  4. 4.
    C. Tanford, Proc. Natl. Acad. Sci., U.S.A. 76, 4175 (1979)ADSGoogle Scholar
  5. 5.
    G. M. Whitesides, E. Simanek, J. Mathias, C. Seto, D. Chin, M. Mammen, D. Gordon, Acc. Chem. Res. 28, 37 (1995)Google Scholar
  6. 6.
    M. Barboiu, J. Lehn, Proc. Natl. Acad. Sci., U.S.A. 99, 5201 (2002)ADSGoogle Scholar
  7. 7.
    H. Schneider, Angew. Chem., Int. Ed. 30, 1417 (1991)ADSGoogle Scholar
  8. 8.
    J. Rebek, Acc. Chem. Res. 23, 399 (1990)Google Scholar
  9. 9.
    K.N. Houk, A.G. Leach, S.P. Kim, X. Zhang, Angew. Chem., Int. Ed. 42, 4872 (2003)Google Scholar
  10. 10.
    Y.K. Cheng, P.J. Rossky, Nature 392, 696 (1998)ADSGoogle Scholar
  11. 11.
    P. Ball, Life’s Matrix: a Biography of Water (University of California Press, Los Angeles, 2001)Google Scholar
  12. 12.
    P. Ball, Chem. Rev. 108, 74 (2008)Google Scholar
  13. 13.
    N.T. Southall, K.A. Dill, A.D.J. Haymet, J. Phys. Chem. B 106, 521 (2002)Google Scholar
  14. 14.
    M.C. Chervenak, E.J. Toone, J. Am. Chem. Soc. 116, 10533 (1994)Google Scholar
  15. 15.
    W. Blokzijl, J.B.F.N. Engberts, Angew. Chem., Int. Ed. 32, 1545 (1993)Google Scholar
  16. 16.
    P. Tompa, K.H. Han, Phys. Today 65, 64 (2012)Google Scholar
  17. 17.
    V. Uversky, Protein Sci. 11, 739 (2002)Google Scholar
  18. 18.
    S. Lee, D. Kim, J. Han, E. Cha, J. Lim, Y. Cho, C. Lee, K.H. Han, Curr. Protein Pept. Sci. 13, 34 (2012)Google Scholar
  19. 19.
    J.R. Beasley, D.F. Doyle, L. Chen, D.S. Cohen, B.R. Fine, G.J. Pielak, Proteins: Struct. Funct. Bioinf. 49, 398 (2002)Google Scholar
  20. 20.
    A. Cornish-Bowden, J. Biosci. 27, 121 (2002)Google Scholar
  21. 21.
    K. Sharp, Protein Sci. 10, 661 (2001)Google Scholar
  22. 22.
    R.R. Krug, W.G. Hunter, R.A. Grieger, J. Phys. Chem. 80, 2335 (1976)Google Scholar
  23. 23.
    R.R. Krug, W.G. Hunter, R.A. Grieger, Nature 261, 566 (1976)ADSGoogle Scholar
  24. 24.
    O. Exner, S. Bohm, New J. Chem. 32, 1449 (2008)Google Scholar
  25. 25.
    C. Clarke, R.J. Woods, J. Gluska, A. Cooper, M.A. Nutley, G.J. Boons, J. Am. Chem. Soc. 123, 12238 (2001)Google Scholar
  26. 26.
    M.S. Searle, M.S. Westwell, D.H. Williams, J. Chem. Soc., Perkin Trans. 2 2, 141 (1995)Google Scholar
  27. 27.
    P.W. Snyder, J. Mecinovic, D.T. Moustakas, S.W. Thomas, M. Harder, E.T. Mack, M.R. Lockett, A. Heroux, W. Sherman, G.M. Whitesides, Proc. Natl. Acad. Sci. U.S.A. 108, 17889 (2012)ADSGoogle Scholar
  28. 28.
    V.M. Krishnamurthy, B.R. Bohall, V. Semetey, G.M. Whitesides, J. Am. Chem. Soc. 128, 5802 (2006)Google Scholar
  29. 29.
    V.M. Krishnamurthy, G.K. Kaufman, A.R. Urbach, I. Gitlin, K.L. Gudiksen, D.B. Weibel, G.M. Whitesides, Chem. Rev. 108, 946 (2008)Google Scholar
  30. 30.
    D. Ford, J. Am. Chem. Soc. 127, 16167 (2005)Google Scholar
  31. 31.
    J.D. Dunitz, Chem. Biol. 2, 709 (1995)Google Scholar
  32. 32.
    D.H. Williams, E. Stephens, D.P. O’Brien, M. Zhou, Angew. Chem., Int. Ed. 43, 6596 (2004)Google Scholar
  33. 33.
    J.D. Dunitz, A. Gavezzotti, Angew. Chem., Int. Ed. 44, 1766 (2005)Google Scholar
  34. 34.
    P. Buchanan, N. Aldiwan, A.K. Soper, J.L. Creek, C.A. Koh, Chem. Phys. Lett. 415, 89 (2005)ADSGoogle Scholar
  35. 35.
    P. Buchanan, A. Soper, H. Thompson, R. Westacott, J. Creek, G. Hobson, C. Koh, J. Chem. Phys. 123, 164507 (2005)ADSGoogle Scholar
  36. 36.
    J. Turner, A.K. Soper, J. Finney, Mol. Phys. 70, 679 (1990)ADSGoogle Scholar
  37. 37.
    W. Jorgensen, Science 254, 954 (1991)ADSGoogle Scholar
  38. 38.
    S. Pal, J. Peon, A.H. Zewail, Proc. Natl. Acad. Sci., U.S.A. 99, 1763 (2002)ADSGoogle Scholar
  39. 39.
    T. Arikawa, M. Nagai, K. Tanaka, Chem. Phys. Lett. 457, 12 (2008)ADSGoogle Scholar
  40. 40.
    S. Balasubramanian, S. Pal, B. Bagchi, Phys. Rev. Lett. 89, 115505 (2002)ADSGoogle Scholar
  41. 41.
    Y. Levy, J. Onuchic, Ann. Rev. Biophys. Biomol. Struct. 35, 389 (2006)Google Scholar
  42. 42.
    A. Der, L. Kelemen, L. Fabian, S. Taneva, E. Fodor, T. Pali, A. Cupane, M. Cacace, J. Ramsden, J. Phys. Chem. B 111, 5344 (2007)Google Scholar
  43. 43.
    M. Grossman, B. Born, M. Heyden, D. Tworowski, G. Fields, I. Sagi, M. Havenith, Nat. Struct. Mol. Biol. 18, 1102 (2011)Google Scholar
  44. 44.
    E. Eisenmesser, D. Bosco, M. Akke, D. Kern, Science 295, 1520 (2002)ADSGoogle Scholar
  45. 45.
    X. Jordanides, M. Lang, X. Song, G. Fleming, J. Phys. Chem. B 103, 7995 (1999)Google Scholar
  46. 46.
    N. Nandi, K. Bhattacharyya, B. Bagchi, Chem. Rev. 100, 2013 (2000)Google Scholar
  47. 47.
    K. Bhattacharyya, Acc. Chem. Res. 36, 95 (2003)Google Scholar
  48. 48.
    L. Palmer, J. Rebek, Org. Biomol. Chem. 2, 3051 (2004)Google Scholar
  49. 49.
    J. Hansen, E. Pines, G. Fleming, J. Phys. Chem. 96, 6904 (1992)Google Scholar
  50. 50.
    A. Douhal, Chem. Rev. 104, 1955 (2004)Google Scholar
  51. 51.
    T.M. Truskett, P.G. Debenedetti, S. Sastry, S. Torquato, J. Chem. Phys. 111, 2647 (1999)ADSGoogle Scholar
  52. 52.
    S. Matysiak, P.G. Debenedetti, P.J. Rossky, J. Phys. Chem. B 115, 14859 (2011)Google Scholar
  53. 53.
    T.M. Truskett, K.A. Dill, J. Chem. Phys. 117, 5101 (2002)ADSGoogle Scholar
  54. 54.
    F. Weinhold, J. Chem. Phys. 109, 373 (1998)ADSGoogle Scholar
  55. 55.
    N. Kobko, L. Paraskevas, E. del Rio, J. Dannenberg, J. J. Am. Chem. Soc. 123, 4248 (2001)Google Scholar
  56. 56.
    A. Masunov, J. Dannenberg, J. Phys. Chem. B 104, 806 (2000)Google Scholar
  57. 57.
    A. Surolia, N. Sharon, F.P. Schwarz, J. Biol. Chem. 271, 17679 (1996)Google Scholar
  58. 58.
    G. Bradbrook, J. Forshaw, S. Perez, Eur. J. Biochem. 267, 4545 (2000)Google Scholar
  59. 59.
    G.A. Jeffrey, Acc. Chem. Res. 2, 344 (1969)Google Scholar
  60. 60.
    J.H. Hildebrand, Proc. Natl. Acad. Sci., U.S.A. 76, 194 (1979)ADSGoogle Scholar
  61. 61.
    K.A. Sharp, J.M. Vanderkooi, Acc. Chem. Res. 43, 231 (2010)Google Scholar
  62. 62.
    F.H. Stillinger, J. Solut. Chem. 2, 141 (1973)Google Scholar
  63. 63.
    K. Lum, D. Chandler, J.D. Weeks, J. Phys. Chem. B 103, 4570 (1999)Google Scholar
  64. 64.
    L.R. Pratt, A. Pohorille, Chem. Rev. 102, 2671 (2002)Google Scholar
  65. 65.
    D. Chandler, Nature 437, 640 (2005)ADSGoogle Scholar
  66. 66.
    D. Chandler, Nature 445, 831 (2007)ADSGoogle Scholar
  67. 67.
    L.M. Salonen, M. Ellermann, F. Diederich, Angew. Chem., Int. Ed. 50, 4808 (2011)Google Scholar
  68. 68.
    P.D. Ross, S. Subramanian, Biochemistry 20, 3096 (1981)Google Scholar
  69. 69.
    W.P. Jencks, Catalysis in Chemistry and Enzymology, 1st edn. (McGraw-Hill, New York, 1969)Google Scholar
  70. 70.
    J. Gordon, W.P. Jencks, Biochemistry 2, 47 (1963)Google Scholar
  71. 71.
    D.B. Smithrud, T.B. Wyman, F. Diederich, J. Am. Chem. Soc. 113, 5420 (1991)Google Scholar
  72. 72.
    K. Silverstein, A. Haymet, K.A. Dill, J. Am. Chem. Soc. 120, 3166 (1998)Google Scholar
  73. 73.
    K.A. Dill, T.M. Truskett, V. Vlachy, B. Hribar-Lee, Ann. Rev. Biophys. Biomol. Struct. 34, 173 (2005)Google Scholar
  74. 74.
    T. Urbic, V. Viachy, K.A. Dill, J. Phys. Chem. B 110, 4963 (2006)Google Scholar
  75. 75.
    R.U. Lemieux, Acc. Chem. Res. 29, 373 (1996)Google Scholar
  76. 76.
    B.A. Williams, M.C. Chervenak, E.J. Toone, J. Biol. Chem. 267, 22907 (1992)Google Scholar
  77. 77.
    J.E. Ladbury, J.G. Wright, J.M. Sturtevant, P.B. Sigler, J. Mol. Biol. 238, 669 (1994)Google Scholar
  78. 78.
    P. Liu, X. Huang, R. Zhou, B.J. Berne, Nature 437, 159 (2005)ADSGoogle Scholar
  79. 79.
    R. Zhou, X. Huang, C.J. Margulis, B.J. Berne, Science 305, 1605 (2004)ADSGoogle Scholar
  80. 80.
    N. Giovambattista, C.F. Lopez, P.J. Rossky, P.G. Debenedetti, Proc. Natl. Acad. Sci. U.S.A. 105, 2274 (2008)ADSGoogle Scholar
  81. 81.
    R. Kumar, J. Schmidt, J. Skinner, J. Chem. Phys. 126, 204107 (2007)ADSGoogle Scholar
  82. 82.
    F. Weinhold, C.R. Landis, Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective (Cambridge University Press, New York, 2005)Google Scholar
  83. 83.
    A. Reed, L. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)Google Scholar
  84. 84.
    G.N.I. Clark, C.D. Cappa, J.D. Smith, R.J. Saykally, T. Head-Gordon, Mol. Phys. 108, 1415 (2010)ADSGoogle Scholar
  85. 85.
    H. Bakker, J. Skinner, Chem. Rev. 110, 1498 (2010)Google Scholar
  86. 86.
    G.L. Richmond, Annu. Rev. Phys. Chem. 52, 257 (2001)Google Scholar
  87. 87.
    J. Sorenson, G. Hura, R. Glaeser, T. Head-Gordon, J. Chem. Phys. 113, 9149 (2000)ADSGoogle Scholar
  88. 88.
    G. Hura, J. Sorenson, R. Glaeser, T. Head-Gordon, J. Chem. Phys. 113, 9140 (2000)ADSGoogle Scholar
  89. 89.
    A. Soper, Chem. Phys. 258, 121 (2000)ADSGoogle Scholar
  90. 90.
    V. Bezzabotnov, L. Cser, T. Grosz, G. Jancso, Y. Ostanevich, J. Phys. Chem. 96, 976 (1992)Google Scholar
  91. 91.
    S. Rajamani, T. Truskett, S. Garde, Proc. Natl. Acad. Sci. U.S.A. 102, 9475 (2005)ADSGoogle Scholar
  92. 92.
    Y. Rezus, H. Bakker, Phys. Rev. Lett. 99, 148301 (2007)ADSGoogle Scholar
  93. 93.
    A. Bakulin, C. Liang, T. Jansen, D. Wiersma, H. Bakker, M. Pshenichnikov, Acc. Chem. Res. 42, 1229 (2009)Google Scholar
  94. 94.
    S. Dixit, J. Crain, W. Poon, J. Finney, A. Soper, Nature 416, 829 (2002)ADSGoogle Scholar
  95. 95.
    Q. Du, R. Superfine, E. Freysz, Y.R. Shen, Phys. Rev. Lett. 70, 2313 (1993)ADSGoogle Scholar
  96. 96.
    E. Raymond, T. Tarbuck, M. Brown, G. Richmond, J. Phys. Chem. B 107, 546 (2003)Google Scholar
  97. 97.
    C. McFearin, D. Beaman, F. Moore, G. Richmond, J. Phys. Chem. C 113, 1171 (2009)Google Scholar
  98. 98.
    L.F. Scatena, M.G. Brown, G.L. Richmond, Science 292, 908 (2001)ADSGoogle Scholar
  99. 99.
    J. Tyrrell, P. Attard, Phys. Rev. Lett. 87, 176104 (2001)ADSGoogle Scholar
  100. 100.
    N. Ishida, T. Inoue, M. Miyahara, K. Higashitani, Langmuir 16, 6377 (2000)Google Scholar
  101. 101.
    R. Steitz, T. Gutberlet, T. Hauss, B. Klösgen, R. Krastev, S. Schemmel, A.C. Simonsen, G.H. Findenegg, Langmuir 19, 2409 (2003)Google Scholar
  102. 102.
    A. Poynor, L. Hong, I. Robinson, S. Granick, Z. Zhang, P. Fenter, Phys. Rev. Lett. 97, 266101 (2006)ADSGoogle Scholar
  103. 103.
    C. McFearin, G.L. Richmond, J. Mol. Liq. 136, 221 (2007)Google Scholar
  104. 104.
    Q. Du, E. Freysz, Y. Shen, Phys. Rev. Lett. 72, 238 (1994)ADSGoogle Scholar
  105. 105.
    Y. Shen, V. Ostroverkhov, Chem. Rev. 106, 1140 (2006)Google Scholar
  106. 106.
    B.J. Berne, J.D. Weeks, R. Zhou, Annu. Rev. Phys. Chem. 60, 85 (2009)ADSGoogle Scholar
  107. 107.
    X. Huang, R. Zhou, B. Berne, J. Phys. Chem. B 109, 3546 (2005)Google Scholar
  108. 108.
    S. Huang, B. Sjöblom, A.E. Sauer-Eriksson, B.H. Jonsson, Biochemistry 41, 7628 (2002)Google Scholar
  109. 109.
    J. Rasaiah, S. Garde, G. Hummer, Annu. Rev. Phys. Chem. 59, 713 (2008)ADSGoogle Scholar
  110. 110.
    A. Wallqvist, B. Berne, J. Phys. Chem. 99, 2885 (1995)Google Scholar
  111. 111.
    T. Lazaridis, J. Phys. Chem. B 102, 3542 (1998)Google Scholar
  112. 112.
    T. Lazaridis, J. Phys. Chem. B 102, 3531 (1998)Google Scholar
  113. 113.
    J. Kim, P.S. Cremer, Phys. Chem. Phys. 2, 543 (2001)Google Scholar
  114. 114.
    X. Chen, S.C. Flores, S.M. Lim, Y. Zhang, T. Yang, J. Kherb, P.S. Cremer, Langmuir 26, 16447 (2010)Google Scholar
  115. 115.
    G. Kim, M.C. Gurau, J. Kim, P.S. Cremer, Langmuir 18, 2807 (2002)Google Scholar
  116. 116.
    X. Chen, T. Yang, S. Kataoka, P.S. Cremer, J. Am. Chem. Soc. 129, 12272 (2007)Google Scholar
  117. 117.
    A.J. Hopkins, C.L. McFearin, G.L. Richmond, Curr. Opin. Solid State Mater. Sci. 9, 19 (2005)ADSGoogle Scholar
  118. 118.
    D. Bearman, E. Robertson, G.L. Richmond, J. Phys. Chem. C 115, 12508 (2011)Google Scholar
  119. 119.
    M. Quillin, P. Wingfield, B. Matthews, Proc. Natl. Acad. Sci. U.S.A. 103, 19749 (2006)ADSGoogle Scholar
  120. 120.
    A. Amadasi, J. Surface, F. Spyrakis, P. Cozzini, A. Mozzarelli, G. Kellogg, J. Med. Chem. 51, 1063 (2008)Google Scholar
  121. 121.
    G. Kellogg, D. Abraham, Eur. J. Med. Chem. 35, 651 (2000)Google Scholar
  122. 122.
    M. Raymer, P. Sanschagrin, W. Punch, S. Venkataraman, E. Goodman, L. Kuhn, J. Mol. Biol. 265, 445 (1997)Google Scholar
  123. 123.
    A. Garcia-Sosa, R. Mancera, P. Dean, J. Mol. Model. 9, 172 (2003)Google Scholar
  124. 124.
    M. Verdonk, J. Cole, R. Taylor, J. Mol. Biol. 289, 1093 (1999)Google Scholar
  125. 125.
    G. Rossato, B. Ernst, A. Vedani, M. Smiesko, J. Chem. Inf. Model. 51, 1867 (2011)Google Scholar
  126. 126.
    D. Beglov, B. Rioux, J. Phys. Chem. B 101, 7821 (1997)Google Scholar
  127. 127.
    D. Chandler, J. McCoy, S. Singer, J. Chem. Phys. 85, 5971 (1986)ADSGoogle Scholar
  128. 128.
    D. Chandler, J. McCoy, S. Singer, J. Chem. Phys. 85, 5977 (1986)ADSGoogle Scholar
  129. 129.
    P. Goodford, J. Med. Chem. 28, 849 (1985)Google Scholar
  130. 130.
    K. Appelt, R. Bacquet, C. Bartlett, C. Booth, S. Freer, M. Fuhry, M. Gehring, S. Herrmann, E. Howland, E. Janson, T. Jones, C. Mohr, E. Moomaw, S. Oatley, R. Ogden, M. Reddy, S. Reich, W. Schoettlin, W. Smith, M. Varney, J. Villafranca, R. Ward, S. Webber, K. Welsh, J. White, J. Med. Chem. 34, 1925 (1991)Google Scholar
  131. 131.
    M.J. Jedrzejas, S. Singh, W.J. Brouillette, G.M. Air, M. Luo, Proteins: Struct., Funct., Genet. 23, 264 (1995)Google Scholar
  132. 132.
    H. Wallnoefer, K. Liedl, T. Fox, J. Chem. Inf. Model. 51, 2860 (2011)Google Scholar
  133. 133.
    C. Barillari, J. Taylor, R. Viner, J. Essex, J. Am. Chem. Soc. 129, 2577 (2007)Google Scholar
  134. 134.
    A. Abel, T. Young, T. Farid, B. Berne, R. Friesner, J. Am. Chem. Soc. 130, 2817 (2008)Google Scholar
  135. 135.
    R. Abel, N.K. Salam, J. Shelley, R. Farid, R.A. Friesner, W. Sherman, Chem. Med. Chem. 6, 1049 (2011)Google Scholar
  136. 136.
    T. Beuming, R. Farid, W. Sherman, Protein Sci. 18, 1609 (2009)Google Scholar
  137. 137.
    C. Higgs, T. Beuming, W. Sherman, ACS Med. Chem. Lett. 1, 160 (2010)Google Scholar
  138. 138.
    K. Kusano, J. Suurkuusk, I. Wadso, J. Chem. Thermodyn 5, 757 (1973)Google Scholar
  139. 139.
    P. Privalov, S. Gill, Pure Appl. Chem. 61, 1097 (1989)Google Scholar
  140. 140.
    V. Payne, N. Matubayasi, L. Murphy, R. Levy, J. Phys. Chem. B 101, 2054 (1997)Google Scholar
  141. 141.
    S. Gill, N. Nichols, I. Wadso, J. Chem. Thermodyn. 7, 175 (1975)Google Scholar
  142. 142.
    S. Gill, N. Nichols, I. Wadso, J. Chem. Thermodyn. 8, 445 (1976)Google Scholar
  143. 143.
    P. Gilli, L. Pretto, V. Bertolasi, G. Gilli, Acc. Chem. Res. 42, 33 (2009)Google Scholar
  144. 144.
    A. Ben-Naim, J. Wilf, J. Phys. Chem. 84, 583 (1980)Google Scholar
  145. 145.
    A. Ben-Naim, Y. Marcus, J. Chem. Phys. 81, 2016 (1984)ADSGoogle Scholar
  146. 146.
    A.V. Plyasunov, E.L. Shock, Geochim. Cosmochim. Acta 64, 439 (2000)ADSGoogle Scholar
  147. 147.
    W. Riebesehl, E. Tomlinson, J. Solution Chem. 15, 141 (1986)Google Scholar
  148. 148.
    CRC Handbook of Chemistry and Physics, 91 edn. (CRC Press, Cleveland, 2010)Google Scholar
  149. 149.
    T.S.G. Olsson, M.A. Williams, W.R. Pitt, J.E. Ladbury, J. Mol. Biol. 384, 1002 (2008)Google Scholar
  150. 150.
    E.A. Meyer, R.K. Castellano, F. Diederich, Angew. Chem., Int. Ed. 42, 1210 (2003)Google Scholar
  151. 151.
    E. Piatnitski, R. Flowers, K. Deshayes, Chem. Eur. J. 6, 999 (2000)Google Scholar
  152. 152.
    M. Rekharsky, Y. Inoue, Chem. Rev. 98, 1875 (1998)Google Scholar
  153. 153.
    N. Shimokhina, A. Bronowska, S.W. Homans, Angew. Chem., Int. Ed. 118, 6522 (2006)Google Scholar
  154. 154.
    R. Malham, S. Johnstone, R.J. Bingham, E. Barratt, S.E.V Phillips, C.A. Laughton, S.W. Homans, J. Am. Chem. Soc. 127, 17061 (2005)Google Scholar
  155. 155.
    S.W. Homans, Drug Discovery Today 12, 534 (2007)Google Scholar
  156. 156.
    T.G. Oas, E.J. Toone, Adv. Biophys. Chem. 6, 1 (1997)Google Scholar
  157. 157.
    L. Liu, Q. Guo, Chem. Rev. 101, 673 (2001)Google Scholar
  158. 158.
    E. Gallichio, M. Kubo, R. Levy, J. Am. Chem. Soc. 120, 4526 (1998)Google Scholar
  159. 159.
    T.S.G. Olsson, J.E. Ladbury, W.R. Pitt, Protein Sci. 20, 1607 (2011)Google Scholar
  160. 160.
    A. Lee, S. Kinnear, A.J. Wand, Nat. Struct. Mol. Biol. 7, 72 (2000)Google Scholar
  161. 161.
    M.S. Marlow, J. Dogan, K.K. Frederick, K.G. Valentine, A.J. Wand, Nat. Chem. Biol. 6, 352 (2010)Google Scholar
  162. 162.
    B. Carrington, R. Mancera, J. Mol. Graphics Model. 23, 167 (2004)Google Scholar
  163. 163.
    C. Chang, W. Chen, M. Gilson, Proc. Natl. Acad. Sci. U.S.A. 104, 1534 (2007)ADSGoogle Scholar
  164. 164.
    P.K. Agarwal, S.R. Billeter, P.T.R. Rajagopalan, S.J. Benkovic, S.J.S. Hammes-Schiffer, Proc. Natl. Acad. Sci. U.S.A. 99, 2794 (2002)ADSGoogle Scholar
  165. 165.
    S.K. Nair, T.L. Calderone, D.W. Christianson, C.A. Fierke, J. Biol. Chem. 266, 17320 (1991)Google Scholar
  166. 166.
    S.Z. Fisher, A.Y. Kovalevsky, J.F. Domsic, M. Mustyakimov, R. McKenna, D.N. Silverman, P.A. Langan, Biochemistry 49, 415 (2010)Google Scholar
  167. 167.
    S.Z. Fisher, C.M. Maupin, M. Budayova-Spano, L. Govindasamy, C. Tu, M. Agbandje-McKenna, D.N. Silverman, G.A. Voth, R. McKenna, Biochemistry 46, 2930 (2007)Google Scholar
  168. 168.
    J. Mecinovic, P.W. Snyder, K.A. Mirica, S. Bai, E.T. Mack, R.L. Kwant, D.T. Moustakas, A. Heroux, G.M Whitesides, G J. Am. Chem. Soc. 133, 14017 (2011)Google Scholar
  169. 169.
    V.M. Krishnamurthy, V. Semetey, P.J. Bracher, N. Shen, G.M. Whitesides, J. Am. Chem. Soc. 129, 1313 (2007)Google Scholar
  170. 170.
    R. Talhout, J.B.F.N. Engberts, Eur. J. Biochem. 268, 1554 (2001)Google Scholar
  171. 171.
    R. Talhout, A. Villa, A.E. Mark, J.B.F.N. Engberts, J. Am. Chem. Soc. 125, 10570 (2003)Google Scholar
  172. 172.
    J. Gelp, S. Kaiko, X. Barril, J. Cirera, X. Cruz, F. Luque, M. Orozco, Proteins: Struct., Funct., Bioinformat. 45, 428 (2001)Google Scholar
  173. 173.
    L. Wang, B.J. Berne, R.A. Friesner, Proc. Natl. Acad. Sci. U.S.A. 108, 1326 (2011)ADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Phillip W. Snyder
    • 1
  • Matthew R. Lockett
    • 1
  • Demetri T. Moustakas
    • 2
  • George M. Whitesides
    • 1
    • 3
  1. 1.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUSA
  2. 2.Infection Innovative Medicines Unit, Chemistry DepartmentAstraZeneca PharmaceuticalsWalthamUSA
  3. 3.Wyss Institute of Biologically Inspired EngineeringHarvard UniversityCambridgeUSA

Personalised recommendations