Advertisement

The stability of nanobubbles

  • Phil Attard
Review

Abstract

The experimental evidence for the existence of nanobubbles is summarized. The paradox represented by their stability and the apparent contradiction with the Laplace-Young equation is discussed in detail. A review of surface thermodynamics is given, which shows that nanobubbles are only stable in water super-saturated with air, and also that the surface tension of the water-air interface decreases with increasing super-saturation. Computer simulation evidence for this reduction is reviewed. Experimental measurements showing the reduction in surface tension in the case of nanobubbles are given. The consequences of this novel physical phenomenon are discussed for nanobubbles, as well as more broadly.

Keywords

Surface Tension Contact Angle European Physical Journal Special Topic Hydrophobic Surface Water Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. Parker, P.M. Claesson, P. Attard, J. Phys. Chem. 98, 8468 (1994)CrossRefGoogle Scholar
  2. 2.
    A. Carambassis, L.C. Jonker, P. Attard, M. Rutland, Phys. Rev. Lett. 80, 5357 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    J.W.G. Tyrrell, P. Attard, Phys. Rev. Lett. 87, 176104 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    J.W.G. Tyrrell, P. Attard, Langmuir 18, 160 (2002)CrossRefGoogle Scholar
  5. 5.
    J. Wood, R. Sharma, Langmuir 11, 4797 (1995)CrossRefGoogle Scholar
  6. 6.
    L. Meagher, V.S.J. Craig, Langmuir 10, 2736 (1994)CrossRefGoogle Scholar
  7. 7.
    R.F. Considine, R.A. Hayes, R.G. Horn, Langmuir 15, 1657 (1999)CrossRefGoogle Scholar
  8. 8.
    J. Mahnke, J. Stearnes, R.A. Hayes, D. Fornasiero, J. Ralston, Phys. Chem. Chem. Phys. 1, 2793 (1999)CrossRefGoogle Scholar
  9. 9.
    N. Ishida, M. Sakamoto, M. Miyahara, K. Higashitani, Langmuir 16, 5681 (2000)CrossRefGoogle Scholar
  10. 10.
    E.E. Meyer, Q. Lin, J.N. Israelachvili, Langmuir 21, 256 (2005)CrossRefGoogle Scholar
  11. 11.
    H. Stevens, R.F. Considine, C.J. Drummond, R.A. Hayes, P. Attard Langmuir 21, 6399 (2005)CrossRefGoogle Scholar
  12. 12.
    M. Holmberg, A. Kühle, J. Garnaes, K.A. Mørc, A. Boisen, Langmuir 19, 10510 (2003)CrossRefGoogle Scholar
  13. 13.
    A. Simonsen, P. Hansen, B. Klosgen, J. Colloid Interface Sci. 273, 291 (2004)CrossRefGoogle Scholar
  14. 14.
    X.H. Zhang, X.D. Zhang, S.T. Lou, Z.X. Zhang, J.L. Sun, J. Hu, Langmuir 20, 3813 (2004)CrossRefGoogle Scholar
  15. 15.
    X.H. Zhang, G. Li, N. Maeda, J. Hu, Langmuir 22, 9238 (2006)CrossRefGoogle Scholar
  16. 16.
    X.H. Zhang, N. Maeda, V.S.J. Craig, Langmuir 22, 5025 (2006)CrossRefGoogle Scholar
  17. 17.
    S. Yang, S.M. Dammer, N. Bremond, H.J.W. Zandvliet, E.S. Kooij, D. Lohse, Langmuir 23, 7072 (2007)CrossRefGoogle Scholar
  18. 18.
    P. Attard, Langmuir 12, 1693 (1996)CrossRefGoogle Scholar
  19. 19.
    P. Attard, M.P. Moody, J.W.G. Tyrrell, Physica A 314, 696 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    P. Attard, Adv. Colloid Interface Sci. 104, 75 (2003)CrossRefGoogle Scholar
  21. 21.
    M.P. Moody, P. Attard, J. Chem. Phys. 117, 6705 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Assuming the bulk equation of state in the nanobubble interior, since finite size corrections appear negligible [20]. Further, bubbles (or droplets) are always thermodynamically unstable in the thermodynamic limit of infinite liquid volume per bubble (or vapor volume per drop) [19,21]. Computer simulations of stable bubbles or drops are for a metastable fluid in a finite volumeGoogle Scholar
  23. 23.
    R.C.J. Tolman, J. Chem. Phys. 17, 333 (1949)ADSCrossRefGoogle Scholar
  24. 24.
    R.F. Kayser, Phys. Rev. A 33, 1948 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    M.J.P. Nijmeijer, C. Bruin, A.B. van Woerkom, A.F. Bakker, J.M.J. van Leeuwen, J. Chem. Phys. 96, 565 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    M.J. Haye, C. Bruin, J. Chem. Phys. 100, 556 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    H. El Bardouni, M. Mareschal, R. Lovett, M. Baus, J. Chem. Phys. 113, 9804 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    E.M. Blokhuis, D. Bedeaux, J. Chem. Phys. 97, 3576 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    E. van Giessen, E.M. Blokhuis, D.J. Bukman, J. Chem. Phys. 108, 1148 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    V.I. Kalikmanov, Phys. Rev. E 55, 3068 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    T.V. Bykov, X.C. Zeng, J. Chem. Phys. 111, 3705 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    M.P. Moody, P. Attard, J. Chem. Phys. 115, 8967 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    C. Fradin, A. Braslau, D. Luzet, D. Smilgies, N. Alba, K. Mecke, J. Daillant, Nature, 403, 871 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    M.P. Moody, P. Attard, Phys. Rev. Lett. 91, 056104 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    J.G. Kirkwood, F. Buff, J. Chem. Phys. 17, 338 (1949)ADSCrossRefGoogle Scholar
  36. 36.
    M.P. Moody, P. Attard, J. Chem. Phys. 120, 1892 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    S. He, P. Attard, Phys. Chem. Chem. Phys. 7, 2928 (2005)CrossRefGoogle Scholar
  38. 38.
    J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28, 258 (1958)ADSCrossRefGoogle Scholar
  39. 39.
    J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 31, 688 (1959)ADSCrossRefGoogle Scholar
  40. 40.
    D.W. Oxtoby, R. Evans, J. Chem. Phys. 89, 7521 (1988)ADSCrossRefGoogle Scholar
  41. 41.
    A.H. Falls, L.E. Scriven, H.T. Davis, J. Chem. Phys. 75, 3986 (1981)ADSCrossRefGoogle Scholar
  42. 42.
    M.A. Hooper, S. Nordholm, J. Chem. Phys. 81, 2432 (1984)ADSCrossRefGoogle Scholar
  43. 43.
    S.M. Thompson, K.E. Gubbins, J.P.R.B. Walton, R.A.R. Chantry, J.S. Rowlinson, J. Chem. Phys. 81, 530 (1984)ADSCrossRefGoogle Scholar
  44. 44.
    D.J. Lee, M.M. Telo de Garma, K.E. Gubbins, J. Chem. Phys. 85, 490 (1986)ADSCrossRefGoogle Scholar
  45. 45.
    “CRC Handbook of Chemistry and Physics”, edited by David R. Lide, 90th edition (Internet Version 2010), (CRC Press/Taylor and Francis, Boca Raton, FL)Google Scholar
  46. 46.
    Results originally presented by P. Attard at the conference “Physics of Micro- and Nano-flows” (Lorentz Center, Leiden, The Netherlands, 2008)Google Scholar
  47. 47.
    G.E. Yakubov, H.-J. Butt, O.I. Vinogradova, J. Phys. Chem. B 104, 3407 (2000)CrossRefGoogle Scholar
  48. 48.
    O.I. Vinogradova, G.E. Yakubov, H.-J. Butt, J. Chem. Phys. 114, 8124 (2001)ADSCrossRefGoogle Scholar
  49. 49.
    Y. Takata, J.-H. J. Cho, B.M. Law, M. Aratono Langmuir 22, 1715 (2006)CrossRefGoogle Scholar
  50. 50.
    J.-H. J. Cho, B.M. Law, F. Rieutord, Phys. Rev. Lett. 92, 166102 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    C. Li, P. Somasundaran, J. Colloid Interface Sci. 146, 215 (1991)CrossRefGoogle Scholar
  52. 52.
    J.-Y. Kim, M.-G. Song, J.-D. Kim, J. Colloid Interface Sci. 223, 285 (2000)CrossRefGoogle Scholar
  53. 53.
    C. Yang, T. Dabros, D. Li, J. Czarnecki, J.H. Masliyah, J. Colloid Interface Sci. 243, 128 (2001)CrossRefGoogle Scholar
  54. 54.
    X.H. Zhang, A. Quinn, W.A. Ducker, Langmuir 24, 4756 (2008)CrossRefGoogle Scholar
  55. 55.
    D.-Q. Zheng, T.-M. Guo, H. Knapp. Fluid Phase Equilib. 129, 197 (1997)CrossRefGoogle Scholar
  56. 56.
    R. Sander, “Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry” (Version 3, http://www.henrys-law.org, 1999)
  57. 57.
    T.D. Blake, J.A. Kitchener, J. Chem. Soc. Faraday Trans. 1 68 1435 (1972)CrossRefGoogle Scholar
  58. 58.
    J.N. Israelachvili, R.M. Pashley, J. Colloid Interface Sci. 98, 500 (1984)Google Scholar
  59. 59.
    P.M. Claesson, C.E. Blom, P.C. Herder, B.W. Ninham, J. Colloid Interface Sci. 114, 234 (1986)CrossRefGoogle Scholar
  60. 60.
    Ya I., Rabinovich B.V., Derjaguin, Colloids Surf. 30, 243 (1988)Google Scholar
  61. 61.
    P.M. Claesson, H.K. Christenson, J. Phys. Chem. 92, 1650 (1988)CrossRefGoogle Scholar
  62. 62.
    H.K. Christenson, P.M. Claesson, J. Berg, P.C. Herder, J. Phys. Chem. 93, 1472 (1989)CrossRefGoogle Scholar
  63. 63.
    P. Kékicheff, O. Spalla, Phys. Rev. Lett. 75, 1851 (1995)ADSCrossRefGoogle Scholar
  64. 64.
    P. Attard, J. Phys. Chem. 93, 6441 (1989)CrossRefGoogle Scholar
  65. 65.
    J.G. Kirkwood, J.B. Shumaker, Proc. Natl Acad. Sci. U. S. A. 38, 863 (1952)ADSCrossRefGoogle Scholar
  66. 66.
    P. Attard, D.J. Mitchell, B.W. Ninham, J. Chem. Phys. 89, 4358 (1988)ADSCrossRefGoogle Scholar
  67. 67.
    P. Attard, D.J. Mitchell, J. Chem. Phys. 88, 4391 (1988)ADSCrossRefGoogle Scholar
  68. 68.
    R. Podgornik, J. Chem. Phys. 91, 5840 (1989)ADSCrossRefGoogle Scholar
  69. 69.
    O. Spalla, L. Belloni, Phys. Rev. Lett. 74, 2515 (1995)ADSCrossRefGoogle Scholar
  70. 70.
    Y.H. Tsao, D.F. Evans, H. Wennerström, Langmuir 9, 779 (1993)CrossRefGoogle Scholar
  71. 71.
    S.J. Miklavic, D.Y.C. Chan, L.R. White, T.W. Healy, J. Phys. Chem. 98, 9022 (1994)CrossRefGoogle Scholar
  72. 72.
    H.K. Christenson, P.M. Claesson, Science 239, 390 (1988)ADSCrossRefGoogle Scholar
  73. 73.
    P. Attard, C.P. Ursenbach, G.N. Patey, Phys. Rev. A 45, 7621 (1992)ADSCrossRefGoogle Scholar
  74. 74.
    P.G. Debenedetti, A.A. Chialvo, J. Chem. Phys. 97, 504 (1992)ADSCrossRefGoogle Scholar
  75. 75.
    D.W. Pohl, W.I. Goldburg, Phys. Rev. Lett. 48, 1111 (1982)ADSCrossRefGoogle Scholar
  76. 76.
    D. Beysens, D. Esteve, Phys. Rev. Lett. 54, 2123 (1985)ADSCrossRefGoogle Scholar
  77. 77.
    E.A. Boucher, J. Chem. Soc. Faraday Trans. 86, 2263 (1990)CrossRefGoogle Scholar
  78. 78.
    D.R. Bérard, P. Attard, G.N. Patey, J. Chem. Phys. 98, 7236 (1993)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Phil Attard

There are no affiliations available

Personalised recommendations