Advertisement

The European Physical Journal Special Topics

, Volume 220, Issue 1, pp 259–273 | Cite as

Model experiments for the Czochralski crystal growth technique

  • A. Cramer
  • J. Pal
  • G. Gerbeth
Review

Abstract

A lot of the physical and the numerical modeling of Czochralski crystal growth is done on the generic Rayleigh-Bénard system. To better approximate the conditions in a Czochralski puller, the influences of a rounded crucible bottom, deviations of the thermal boundary conditions from the generic case, crucible and/or crystal rotation, and the influence of magnetic fields are often studied separately. The present contribution reviews some of these topics while concentrating on studies of the flow and related temperature fluctuations in systems where a rotating magnetic field (RMF) was applied. The three-dimensional convective patterns and the resulting temperature fluctuations will be discussed both for the mere buoyant case and for the application of an RMF. It is shown that a system between a Rayleigh-Bénard and a more realistic configuration, which is still cylindrical but whose surface is partially covered by a crystal model, behaves much the same as a Rayleigh-Bénard system. An RMF can be used to damp the temperature fluctuations. Secondly, a more Czochralski-like system is examined. It turns out that the RMF does not provide the desired damping of the temperature fluctutions in the parameter range considered.

Keywords

Rayleigh Number European Physical Journal Special Topic Convective Pattern Crystal Model Crucible Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.T.J. Hurle, Handook of Crystal Growth (North-Holland, Amsterdam, 1993)Google Scholar
  2. 2.
    A. Anselmo, V. Prasad, J. Koziol, K.P. Gupta, J. Cryst. Growth 134, 116 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    H. Saeedi, M. Asadian, Sh. Enayati, N. Mirzaei, I. Mashayekhi Asi, J. Sabbaghzadeh, Cryst. Res. Technol. 46, 1229 (2011)CrossRefGoogle Scholar
  4. 4.
    J. Friedrich, Y.S. Lee, B. Fischer, C. Kupfer, D. Vizman, G. Müller, Phys. Fluids 11, 853 (1999)ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    I. Grants, G. Gerbeth, J. Cryst. Growth 308, 290 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    A. Cramer, M. Röder, J. Pal, G. Gerbeth, Magnetohydrodyn. 46, 353 (2010)Google Scholar
  7. 7.
    I. Grants, G. Gerbeth, Phys. Fluids 308, 024103 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    M.P. Volz, K. Mazuruk, J. Fluid Mech. 444, 79 (2001)ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    F. Hébert, R. Hufschmid, J. Scheel, G. Ahlers, Phys. Rev. E 81, 046318 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    M. Wanschura, H.C. Kuhlmann, H.J. Rath, J. Fluid Mech. 326, 399 (1996)ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    G. Neumann, J. Fluid Mech. 214, 559 (1990)ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    E. Crespo del Arco, P. Bontoux, R.L. Sani, G. Hardin, G.P. Extrémet, Adv. Space Res. 8, 281 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    R. Verzicco, R. Camussi, J. Fluid Mech. 383, 55 (1999)ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Y. Tsuji, T. Mizuno, T. Mashiko, M. Sano, Phys. Rev. Lett. 94, 034501 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    G.S. Charlson, R.L. Sani, Int. J. Heat Mass Trans. 13, 1479 (1970)zbMATHCrossRefGoogle Scholar
  16. 16.
    J. C. Buell, I. Catton, J. Heat Transf. 105, 255 (1983)CrossRefGoogle Scholar
  17. 17.
    L.P. Gorbachev, N.V. Nikitin, A.L. Ustinov, Magnetohydrodyn. 10, 406 (1974)Google Scholar
  18. 18.
    P.A. Davidson, J. Fluid Mech. 245, 669 (1992)ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    A. Cramer, K. Varshney, Th. Gundrum, G. Gerbeth, Flow Meas. Instrum. 17, 1 (2006)CrossRefGoogle Scholar
  20. 20.
    T. Robinson, K. Larsson, J. Fluid Mech. 60, 641 (1973)ADSCrossRefGoogle Scholar
  21. 21.
    P.A. Davidson, J.C.R. Hunt, J. Fluid Mech. 185, 67 (1987)ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    M.P. Volz, K. Mazuruk, Int. J. Heat Mass. Tran. 42, 1037 (1999)zbMATHCrossRefGoogle Scholar
  23. 23.
    A. Cramer, J. Pal, G. Gerbeth, Phys. Fluids 24, 045105 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    A. Cramer, S. Landgraf, E. Beyer, G. Gerbeth, Exp. Fluids 50, 479 (2010)CrossRefGoogle Scholar
  25. 25.
    G.K. Batchelor, Quart. J. Roy. Soc. 80, 339 (1954)ADSCrossRefGoogle Scholar
  26. 26.
    R.U. Barz, G. Gerbeth, U. Wunderwald, E. Buhrig, Yu. M. Gelfgat, J. Cryst. Growth 180, 410 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    I. Grants, C. Zhang, S. Eckert, G. Gerbeth, J. Fluid Mech. 616, 135 (2008)ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    C.S. Yih, Q. Appl. Math. 17, 25 (1959)MathSciNetzbMATHGoogle Scholar
  29. 29.
    L. Gorbunov, A. Pedchenko, A. Feodorov, E. Tomzig, J. Virbulis, W. von Ammon, J. Cryst. Growth 257, 7 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    R. Nauber, M. Burger, L. Büttner, S. Franke, D. Räbiger, S. Eckert, K. Niemietz, O. Pätzold, J. Czarske, Eur. Phys. J. Special Topics 220, 43 (2013)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • A. Cramer
    • 1
  • J. Pal
    • 1
  • G. Gerbeth
    • 1
  1. 1.Helmholtz-Zentrum Dresden-RossendorfDresdenGermany

Personalised recommendations