Advertisement

The European Physical Journal Special Topics

, Volume 220, Issue 1, pp 243–257 | Cite as

The use of magnetic fields in vertical Bridgman/Gradient Freeze-type crystal growth

  • Olf Pätzold
  • Kathrin Niemietz
  • Ronny Lantzsch
  • Vladimir Galindo
  • Ilmars Grants
  • Martin Bellmann
  • Gunter Gerbeth
Review

Abstract

This paper outlines advanced vertical Bridgman/Gradient Freeze techniques with flow control using magnetic fields developed for the growth of semiconductor crystals. Low-temperature flow modelling, as well as laboratory-scaled crystal growth under the influence of rotating, travelling, and static magnetic fields are presented. Experimental and numerical flow modelling demonstrate the potential of the magnetic fields to establish a well-defined flow for tailoring heat and mass transfer in the melt during growth. The results of the growth experiments are discussed with a focus on the influence of a rotating field on the segregation of dopants, the influence of a travelling field on the temperature field and thermal stresses, and the potential of rotating and static fields for a stabilization of the melt flow.

Keywords

Crystal Growth European Physical Journal Special Topic Gallium Arsenide Coil System Vertical Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ghosh, M. Dietrich, A. Müller, S. Peters, D. Sontag, H. Neuhaus, Sol. State Phen. 108-109, 515 (2005)CrossRefGoogle Scholar
  2. 2.
    M. Jurisch, F. Börner, T. Bünger, S. Eichler, T. Flade, U. Kretzer, A. Köhler, J. Stenzenberger, B. Weinert, Prog. Crystal Growth Charact. 38, 7 (1999)CrossRefGoogle Scholar
  3. 3.
    http://tu-dresden.de/forschung/forschungskompetenz/sonderforschungsbereiche/sfb609Google Scholar
  4. 4.
    T. Vogt, I. Grants, D. Räbiger, S. Eckert, G. Gerbeth, Exp. Fluids 52, 1 (2012)CrossRefGoogle Scholar
  5. 5.
    I. Grants, G. Gerbeth, Phys. Fluids 24, 024103 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    I. Grants, G. Gerbeth, J. Cryst. Growth 358, 43 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    I. Grants, G. Gerbeth, J. Fluid Mech. 431, 407 (2001)ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    I. Grants, G. Gerbeth, J. Fluid Mech. 463, 229 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    I. Grants, G. Gerbeth, Phys. Fluids 15, 2803 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    I. Grants, G. Gerbeth, J. Cryst. Growth 269, 630 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    I. Grants, C. Zhang, S. Eckert, G. Gerbeth, J. Fluid Mech. 616, 135 (2008)ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    I. Grants, G. Gerbeth, J. Cryst. Growth 310, 3699 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    I. Grants, A. Klyukin, G. Gerbeth, J. Cryst. Growth 311, 4255 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    I. Grants, G. Gerbeth, Phys. Rev. E 82, 016314 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    K. Niemietz, V. Galindo, O. Pätzold, G. Gerbeth, M. Stelter, J. Cryst. Growth 318, 150 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    V. Galindo, K. Niemietz, O. Pätzold, G. Gerbeth, J. Cryst. Growth 360, 30 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    N. Dropka, W. Miller, R. Menzel, U. Rehse, J. Cryst. Growth 312, 1407 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    K. Dadzis, J. Ehrig, K. Niemietz, O. Pätzold, U. Wunderwald, J. Friedrich, J. Cryst. Growth 333, 7 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Takeda, Nucl. Engin. Design 126, 277 (1991)CrossRefGoogle Scholar
  20. 20.
    S. Eckert, G. Gerbeth, Technisches Messen 79, 410 (2012)CrossRefGoogle Scholar
  21. 21.
    E. Buhrig, G. Schwichtenberg, O. Pätzold, Cryst. Res. Technol. 35, 911 (2000)CrossRefGoogle Scholar
  22. 22.
    P.A. Davidson, J. Fluid Mech. 245, 669 (1992)ADSzbMATHCrossRefGoogle Scholar
  23. 23.
    R.W. Series, D.T.J. Hurle, J. Cryst. Growth 113, 305 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    P. Dold, K.W. Benz, Prog. Cryst. Growth Charact. 38, 7 (1999)CrossRefGoogle Scholar
  25. 25.
    S. Yesilyurt, L. Vjusic, S. Motakef, F. R. Szofran, A. Cröll, J. Cryst. Growth 211, 360 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    C.W. Lan, I.F. Lee, B.C. Yeh, J. Cryst. Growth 254, 503 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    M. Hainke, J. Friedrich, G. Müller, Magnetohydrodynamics 39, 513 (2003)ADSGoogle Scholar
  28. 28.
    P. Schwesig, M. Hainke, J. Friedrich, G. Müller, J. Cryst. Growth 266, 224 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    T.P. Lyubimova, A. Croell, P. Dold, O.A. Khlybov, I.S. Fayzrakhmanova, J. Cryst. Growth 266, 404 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    B. Fischer, J. Friedrich, T. Jung, M. Hainke, J. Dagner, T. Fühner, P. Schwesig, J. Cryst. Growth 275, 240 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    M.P. Volz, J.S. Walker, M. Schweizer, S.D. Cobb, F.R. Szofran, J. Cryst. Growth 282, 305 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    X. Wang, N. Ma, D.F. Bliss, G.W. Iseler, P. Becla, J. Thermophys. Heat Transfer 20, 304 (2006)Google Scholar
  33. 33.
    X. Wang, N. Ma, J. Heat Transfer 129, 241 (2007)CrossRefGoogle Scholar
  34. 34.
    M.P. Bellmann, O. Pätzold, U. Wunderwald, M. Stelter, H. J. Möller, J. Cryst. Growth 303, 250 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    P. Nikrityuk, O. Pätzold, M. Stelter, J. Cryst. Growth 339, 75 (2012)ADSGoogle Scholar
  36. 36.
    Yu. Gelfgat, M. Abricka, J. Krumins, Magnetohydrodynamics 87, 337 (2001)ADSGoogle Scholar
  37. 37.
    K. Mazuruk, Adv. Space Res. 29, 541 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    S. Yesilyurt, S. Motakef, R. Grugel, K. Mazuruk, J. Cryst. Growth 263, 80 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    P. Rudolph, J. Cryst. Growth 310, 1298 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    C. Frank-Rotsch, D. Jockel, M. Ziem, P. Rudolph, J. Cryst. Growth 310, 1505 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    C. Frank-Rotsch, P. Rudolph, J. Cryst. Growth 311, 2294 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    N. Dropka, W. Miller, U. Rehse, P. Rudolph, F. Büllesfeld, U. Sahr, O. Klein, D. Reinhardt, J. Cryst. Growth 318, 275 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    F.-M. Kiessling, F. Büllesfeld, N. Dropka, C. Frank-Rotsch, M. Müller, P. Rudolph, J. Cryst. Growth 360, 81 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    P. Rudolph, K. Kakimoto, MRS Bulletin 34, 251 (2009)CrossRefGoogle Scholar
  45. 45.
    O. Pätzold, I. Grants, U. Wunderwald, K. Jenkner, A. Cröll, G. Gerbeth, J. Cryst. Growth 245, 237 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    O. Pätzold, U. Wunderwald, M. Bellmann, P. Gumprich, E. Buhrig, A. Cröll, Adv. Eng. Mater. 6, 554 (2004)CrossRefGoogle Scholar
  47. 47.
    V. Galindo, I. Grants, R. Lantzsch, O. Pätzold, M. Stelter, J. Cryst. Growth 303, 258 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    R. Lantzsch, V. Galindo, I. Grants, C. Zhang, O. Pätzold, G. Gerbeth, M. Stelter, J. Cryst. Growth 305, 249 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    R. Lantzsch, I. Grants, O. Pätzold, M. Stelter, G. Gerbeth, J. Cryst. Growth 310, 1518 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    M. Bellmann, O. Pätzold, G. Gärtner, H.J. Möller, M. Stelter, J. Cryst. Growth 311, 1471 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    B. Willers, S. Eckert, P.A. Nikrityuk, D. Räbiger, J. Dong, K. Eckert, G. Gerbeth, Met. Mat. Transactions B 39, 304 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    M. Bellmann, O. Pätzold, U. Wunderwald, A. Cröll, Cryst. Res. Technol. 39, 193 (2004)CrossRefGoogle Scholar
  53. 53.
    I.V. Barmin, A.S. Senchenkov, A. Greif, O. Pätzold, U. Wunderwald, A. Cröll, A. Mitric, Magnetohydrodyn. 45, 325 (2009)Google Scholar
  54. 54.
    P. Dold, A. Cröll, M. Lichtensteiger, T. Kaiser, K.W. Benz, J. Cryst. Growth 231, 95 (2001)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Olf Pätzold
    • 1
  • Kathrin Niemietz
    • 1
  • Ronny Lantzsch
    • 2
  • Vladimir Galindo
    • 3
  • Ilmars Grants
    • 3
  • Martin Bellmann
    • 4
  • Gunter Gerbeth
    • 3
  1. 1.Institut für Nichteisenmetallurgie und ReinststoffeTU BergakademieFreibergGermany
  2. 2.Hanwha Q.Cells GmbHThalheimGermany
  3. 3.Institut für FluiddynamikHelmholtz-Zentrum Dresden-RossendorfDresdenGermany
  4. 4.Sintef FoundationNorwegian Institute of TechnologyTrondheimNorway

Personalised recommendations