Advertisement

The European Physical Journal Special Topics

, Volume 220, Issue 1, pp 215–225 | Cite as

Linear and non-linear stability of melt flows in magnetic fields

  • I. Grants
  • V. Galindo
  • G. Gerbeth
Review

Abstract

This review considers the stability of melt motion in two simplified models of semiconductor crystal growth by either vertical gradient freeze (VGF) or Czochralski (Cz) processes under the influence of various magnetic fields. In VGF the crystal is grown at the bottom of the crucible, resulting in a stable thermal stratification of the melt. The presence of a stabilizing temperature gradient surprisingly decreases the stability of the flow driven by a rotating magnetic field (RMF). The instability of the travelling magnetic field (TMF)-driven flow, in contrast, is significantly delayed by thermal stratification in VGF. The TMF may, thus, be used in VGF to control the shape of the solidification interface or the radial dopant distribution without causing undesirable flow oscillations. The crystal is pulled out from the melt in the Cz process, producing an unstable temperature gradient below the crystal. The RMF is able to force the resulting unstable buoyant flow into a state of small-scale, high-frequency turbulence that may be regarded as stable for practical purposes. This effect is experimentally observed over a wide range of Grashof numbers, up to 109, characteristic for a large Cz system.

Keywords

Crystal Growth Direct Numerical Simulation European Physical Journal Special Topic Linear Instability Rotate Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.T.J. Hurle, P. Rudolph, J. Crystal Growth 264, 550 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    J.R. Ristorcelli, J.L. Lumley, J. Crystal Growth 116, 447 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    A. Muiznieks, A. Krauze, B. Nacke, J. Crystal Growth 303, 211 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    P.A. Davidson, J.C.R. Hunt, J. Fluid Mech. 185, 67 (1987)ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    L.P. Gorbachev, N. V. Nikitin, A. L. Ustinov, Magn. Gidrodin. 10, 406 (1974)CrossRefGoogle Scholar
  6. 6.
    T. Kaiser, K. Benz, Phys. Fluids 10, 1104 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    L. Martin Witkowski, P. Marty, J.S. Walker, J. Fluid Mech. 436, 131 (2001)ADSzbMATHGoogle Scholar
  8. 8.
    A.T. Richardson, J. Fluid Mech. 63, 593 (1974)ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    P.A. Davidson, J. Fluid Mech. 245, 669 (1992)ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Yu. M. Gelfgat, J. Priede, Magnetohydrodyn. 31, 188 (1995)zbMATHGoogle Scholar
  11. 11.
    R. Mößner, G. Gerbeth, J. Crystal Growth 197, 341 (1999)CrossRefGoogle Scholar
  12. 12.
    R.U. Barz, G. Gerbeth, U. Wunderwald, E. Buhrig, Yu. M. Gelfgat, J. Crystal Growth 180, 410 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    I. Grants, G. Gerbeth, J. Fluid Mech. 431, 407 (2001)ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    S. Grossmann, Rev. Mod. Phys. 72, 603 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    I. Grants, G. Gerbeth, J. Fluid Mech. 463, 229 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    I. Grants, G. Gerbeth, Phys. Fluids 15, 2803 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    K. Koal, J. Stiller, R. Grundmann Phys. Fluids 19, 088107 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    I. Grants, G. Gerbeth, Phys. Rev. E 82, 16314 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    J.J. Riley, M.-P. Lelong, Annu. Rev. Fluid Mech. 32, 613 (2000)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    M. Gellert, G. Rüdiger, J. Fluid Mech. 623, 375 (2009)ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    F. Waleffe, Phys. Fluids 7, 3060 (1995)MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    H. Faisst, B. Eckhardt, Phys. Rev. Lett. 91, 224502 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon, Oxford, 1961)Google Scholar
  24. 24.
    P. Dold, K.W. Benz, J. Cryst. Res. Technol. 30, 1135 (1995)CrossRefGoogle Scholar
  25. 25.
    J. Friedrich, Y.-S. Lee, B. Fischer, C. Kupfer, D. Vizman, G. Müller, Phys. Fluids 11, 853 (1999)ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    M.P. Volz, K. Mazuruk, J. Fluid Mech 444, 79 (2001)ADSzbMATHCrossRefGoogle Scholar
  27. 27.
    J.S. Walker, M.P. Volz, K. Mazuruk, Int. J. Heat Mass Transf. 47, 1877 (2004)zbMATHCrossRefGoogle Scholar
  28. 28.
    I. Grants, G. Gerbeth, Phys. Fluids 16, 2088 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    I. Grants, A. Pedchenko, G. Gerbeth, Phys. Fluids 18, 124104 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    I. Grants, G. Gerbeth, J. Crystal Growth 308, 290 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    T. Robinson, K. Larsson, J. Fluid Mech. 60, 641 (1973)ADSCrossRefGoogle Scholar
  32. 32.
    I. Grants, G. Gerbeth, Phys. Fluids 24, 024103 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    J. Krumins. Fundamentals of theory and calculation for devices with a travelling magnetic field. (Zinatne Publishing House, Riga, 1983) (in Russian)Google Scholar
  34. 34.
    A. Yu. Gelfgat, J. Crystal Growth 279, 276 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    K. Mazuruk, Adv. Space Res. 29, 541 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    M.P. Volz, K. Mazuruk, Magnetohydrodyn. 40, 117 (2004)ADSGoogle Scholar
  37. 37.
    I. Grants, G. Gerbeth, J. Crystal Growth 269, 630 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    T.P. Lyubimova, A. Croell, P. Dold, O.A. Khlybov, I.S. Fayzrakhmanova, J. Crystal Growth 266, 404 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    N. Ramachandran, K. Mazuruk, M.P. Volz, J. Jpn. Soc. Microgravity Appl. 17, 98 (2000)Google Scholar
  40. 40.
    S. Yesilyurt, S. Motakef, R. Grugel, K. Mazuruk, J. Crystal Growth 263, 80 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    A. Cramer, J. Pal, K. Koal, S. Tschisgale, J. Stiller, G. Gerbeth, J. Crystal Growth 321, 142 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    P. Rudolph, J. Crystal Growth 310, 1298 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    R. Lantzsch, V. Galindo, I. Grants, C. Zhang, O. Pätzold, G. Gerbeth, M. Stelter, J. Crystal Growth 305, 249 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    Ch. Frank-Rotsch, D. Jockel, M. Ziem, P. Rudolph, J. Crystal Growth 310, 1501 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    I. Grants, A. Klyukin, G. Gerbeth, J. Crystal Growth 311, 4255 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    S. Motakef, J. Crystal Growth 102, 197 (1990)ADSCrossRefGoogle Scholar
  47. 47.
    J. Priede, G. Gerbeth, J. Crystal Growth 285, 261 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    I. Grants, G. Gerbeth, J. Crystal Growth 310, 3699 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    R. Lantzsch, I. Grants, O. Pätzold, M. Stelter, G. Gerbeth, J. Crystal Growth 310, 1518 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    Ch. Frank-Rotsch, P. Rudolph, J. Crystal Growth 311, 2294 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • I. Grants
    • 1
  • V. Galindo
    • 1
  • G. Gerbeth
    • 1
  1. 1.Helmholtz-Zentrum Dresden-RossendorfDresdenGermany

Personalised recommendations