Advertisement

The European Physical Journal Special Topics

, Volume 220, Issue 1, pp 151–166 | Cite as

Experimental and numerical modelling of the fluid flow in the continuous casting of steel

  • K. Timmel
  • X. Miao
  • T. Wondrak
  • F. Stefani
  • D. Lucas
  • S. Eckert
  • G. Gerbeth
Review

Abstract

This article gives an overview of recent research activities with respect to the mold flow in the continuous casting of steel in presence of DC magnetic fields. The magnetic fields appear to be an attractive tool for controlling the melt flow in a contactless way. Various kinds of magnetic systems are already in operation in industrial steel casting, but the actual impact on the melt flow has not been sufficiently verified by experimental studies. The rapid development of innovative diagnostic techniques in low-melting liquid metals over the last two decades enables new possibilities for systematic flow measurements in liquid metal model experiments. A new research program was initiated at HZDR comprising three experimental facilities providing a LIquid Metal Model for continuous CASTing of steel (LIMMCAST). The facilities operate in a temperature range from room temperature up to 400C using the low-melting alloys GaInSn and SnBi, respectively. The experimental program is focused on quantitative flow measurements in the mold, the submerged entry nozzle and the tundish. Local potential probes, Ultrasonic Doppler Velocimetry (UDV) and Contactless Inductive Flow Tomography (CIFT) are employed to measure the melt flow. The behavior of two-phase flows in case of argon injection is investigated by means of the Mutual Inductance Tomography (MIT) and X-ray radioscopy. The experimental results provide a substantial data basis for the validation of related numerical simulations. Numerical calculations were performed with the software package ANSYS-CFX with an implemented RANS-SST turbulence model. The non-isotropic nature of MHD turbulence was taken into account by specific modifications of the turbulence model. First results of the LIMMCAST program reveal important findings such as the peculiar, unexpected phenomenon that the application of a DC magnetic field may excite non-steady, non-isotropic large-scale flow oscillations in the mold. Another important result of our study is that electrical boundary conditions, namely the wall conductivity ratio, have a serious influence on the mold flow while it is exposed to an external magnetic field.

Keywords

Mold Liquid Metal European Physical Journal Special Topic Continuous Casting Submerged Entry Nozzle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Idogawa, M. Sugizawa, S. Takeuchi, K. Sorimachi, T. Fujii, Mat. Sci. Eng. A 173, 293 (1993)CrossRefGoogle Scholar
  2. 2.
    S.G. Kollberg, H.R. Hackl, P.J. Hanley, Iron Steel Eng. 73, 24 (1996)Google Scholar
  3. 3.
    H. Yasuda, T. Toh, K. Iwai, K. Morita, ISIJ Int. 47, 619 (2007)CrossRefGoogle Scholar
  4. 4.
    K. Okazawa, T. Toh, J. Fukuda, T. Kawase, M. Toki, ISIJ Int. 41, 851 (2001)CrossRefGoogle Scholar
  5. 5.
    S. Kunstreich, P.H. Dauby in Proc. of 4th European Continuous Casting Conf.(2002)Google Scholar
  6. 6.
    P.H. Dauby, S. Kunstreich in Proc.ISS Int. Techn. Conf. & Exhibition(2003)Google Scholar
  7. 7.
    J. Nagai, S. Kojima, K.I. Suzuki, S. Kollberg, Iron Steel Eng. 61, 41 (1984)Google Scholar
  8. 8.
    K. Takatani, K. Nakai, N. Kasai, T. Watanabe, H. Nakajima, ISIJ Int. 29, 1063 (1989)CrossRefGoogle Scholar
  9. 9.
    H. Harada, T. Toh, K. Kaneko, E. Takeuchi, ISIJ Int. 41, 1236 (2001)CrossRefGoogle Scholar
  10. 10.
    B. Li, F. Tsukihashi, ISIJ Int. 46, 1833 (2006)CrossRefGoogle Scholar
  11. 11.
    K. Cukierski, B.G. Thomas, Metall. Mater. Trans. B 39, 94 (2008)CrossRefGoogle Scholar
  12. 12.
    B. Li, T. Okane, T. Umeda, Metall. Mater. Trans. B 31, 1491 (2000)CrossRefGoogle Scholar
  13. 13.
    H. Bai, B.G. Thomas, Metall. Mater. Trans. B 32, 707 (2001)CrossRefGoogle Scholar
  14. 14.
    H. Bai, B.G. Thomas, Metall. Mater. Trans. B 32, 253 (2001)CrossRefGoogle Scholar
  15. 15.
    H. Bai, B.G. Thomas, Metall. Mater. Trans. B 32, 269 (2001)CrossRefGoogle Scholar
  16. 16.
    B.G. Thomas, L. Zhang, ISIJ Int. 41, 1181 (2001)CrossRefGoogle Scholar
  17. 17.
    R. McDavid, B.G. Thomas, Metall. Mater. Trans. B 27, 672 (1996)CrossRefGoogle Scholar
  18. 18.
    K.H. Moon, H.K. Shin, B.J. Kim, J.Y. Chung, Y.S. Hwang, J.K. Yoon, ISIJ Int. 36, S201 (1996)CrossRefGoogle Scholar
  19. 19.
    P. Gardin, J.-M. Galpin, M.-C. Rgnier, J.-P. Radot, Magnetohydrodynamics 32, 189 (1996)Google Scholar
  20. 20.
    N. Kubo, T. Ishii, J. Kubota, T. Ikagawa, ISIJ Int. 44, 556 (2004)CrossRefGoogle Scholar
  21. 21.
    N. Kubo, J. Kubota, M. Suzuki, T. Ishii, ISIJ Int. 47, 988 (2007)CrossRefGoogle Scholar
  22. 22.
    R. Ricou, C. Vives, Int. J. Heat Mass Transfer 25, 1579 (1982)CrossRefGoogle Scholar
  23. 23.
    J. Etay, Y. Dalannoy, Magnetohydrodynamics 39, 445 (2003)ADSGoogle Scholar
  24. 24.
    J. Etay, B. Dumont, J. Hamburger, R. Bolcato, R. Haettel, Exp. Fluids 32, 518 (2002)CrossRefGoogle Scholar
  25. 25.
    Z. Yu, Z. Lei, Z. Zhang, H. Zhang, Z. Ren, K. Deng, in Proc. of 6th Int. Conf. on Electromagnetic Processing of Materials, 227 (2009)Google Scholar
  26. 26.
    Z. Lei, H. Zhang, Z. Ren, K. Deng, Y. Zhong, in Proc. of 6th Int. Conf. on Electromagnetic Processing of Materials, 575 (2009)Google Scholar
  27. 27.
    K. Ayata, K. Miyazawa, E. Takeuchi, N. Bessho, H. Mori, H. Tozawa, in Proc. of 3rd Int. Symposium on Electromagnetic Processing of Materials, 376 (2000)Google Scholar
  28. 28.
    K. Timmel, S. Eckert, G. Gerbeth, F. Stefani, T. Wondrak, ISIJ Int. 50, 1134 (2010)CrossRefGoogle Scholar
  29. 29.
    Y. Takeda, Int. J. Heat Fluid Flow 7, 313 (1986)CrossRefGoogle Scholar
  30. 30.
    Y Takeda, Nuclear Eng. Design 126, 277 (1991)CrossRefGoogle Scholar
  31. 31.
    F. Stefani, G. Gerbeth, Meas. Sci. Techn. 11, 758 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    F. Stefani, T. Gundrum, G. Gerbeth, Phys. Rev. E 70, 056306 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    T. Wondrak, V. Galindo, G. Gerbeth, T. Gundrum, F. Stefani, K. Timmel, Meas. Sci. Techn. 21, 045402 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    X. Ma, A.J. Peyton, S.R. Higson, A. Lyons, S.J. Dickinson, Meas. Sci. Techn. 17, 111 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    N. Terzija, W. Yin, G. Gerbeth, F. Stefani, K. Timmel, T. Wondrak, A.J. Peyton, Meas. Sci. Techn. 22, 015501 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    N. Terzija, W. Yin, G. Gerbeth, F. Stefani, K. Timmel, T. Wondrak, A.J. Peyton, Flow Meas. Instr. 22, 10 (2011)CrossRefGoogle Scholar
  37. 37.
    Y. Plevachuk, Int. J. Mat. Res. 101, 839 (2010)CrossRefGoogle Scholar
  38. 38.
    J. Priede, D. Buchenau, G. Gerbeth, Magnetohydrodynamics 45, 451 (2009)Google Scholar
  39. 39.
    G. Gerbeth, S. Eckert, F. Stefani, K. Timmel, T. Wondrak, J. Iron Steel Res. Int. 19 - Suppl. 1, 1 (2012)Google Scholar
  40. 40.
    S. Eckert, G. Gerbeth, V.I. Melnikov, Exp. Fluids 35, 381 (2003)CrossRefGoogle Scholar
  41. 41.
    K. Timmel, S. Eckert, G. Gerbeth, Metall. Mater. Trans. B 42, 68 (2011)CrossRefGoogle Scholar
  42. 42.
    F. Menter, AIAA Journal 32, 1598 (1994)ADSCrossRefGoogle Scholar
  43. 43.
    R. Moreau, Magnetohydrodynamics (Kluwer Academic Publishers, Dordrecht, 1990), p. 138Google Scholar
  44. 44.
    X. Miao, K. Timmel, D. Lucas, Z. Ren, S. Eckert, G. Gerbeth, Metall. Mater. Trans. B 43, 954 (2012)CrossRefGoogle Scholar
  45. 45.
    O. Widlund, S. Zahrai, F.H. Bark, Phys. Fluids 10, 1987 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    K. Timmel, X. Miao, S. Eckert, D. Lucas, G. Gerbeth, Magnetohydrodynamics 46, 437 (2010)Google Scholar
  47. 47.
    K. Timmel, T. Wondrak, M. Röder, F. Stefani, S. Eckert, G. Gerbeth, J. Iron Steel Res. Int. 19 - Suppl. 1, 862 (2012)Google Scholar
  48. 48.
    T. Wondrak, S. Eckert, V. Galindo, G. Gerbeth, F. Stefani, K. Timmel, A.J. Peyton, W. Yin, S. Riaz, Ironmaking Steelmaking 39, 1 (2012)CrossRefGoogle Scholar
  49. 49.
    X. Miao, K. Timmel, D. Lucas, Z. Ren, S. Eckert, G. Gerbeth, J. Iron Steel Res. Int. 19 - Suppl. 1, 845 (2012)Google Scholar
  50. 50.
    T. Wondrak, S. Eckert, G. Gerbeth, K. Klotsche, F. Stefani, K. Timmel, A.J. Peyton, N. Terzija, W. Yin, Metall. Mater. Trans. B 42, 1201 (2011)CrossRefGoogle Scholar
  51. 51.
    F. Stefani, S. Eckert, G. Gerbeth, K. Klotsche, K. Timmel, T. Wondrak, A.J. Peyton, N. Terzija, W. Yin, J. Iron Steel Res. Int. 19 - Suppl. 1, 479 (2012)Google Scholar
  52. 52.
    A. Maiwald, K. Timmel, R. Schwarze, G. Gerbeth, in Proc. of 6th Int. Conf. on Electromagnetic Processing of Materials, 239 (2009)Google Scholar
  53. 53.
    R. Chaudhary, B.G. Thomas, S. Vanka, Metall. Mater. Trans. B 43, 532 (2012)CrossRefGoogle Scholar
  54. 54.
    R. Chaudhary, C. Ji, B.G. Thomas, S. Vanka, Metall. Mater. Trans. B 42, 987 (2011)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • K. Timmel
    • 1
  • X. Miao
    • 1
  • T. Wondrak
    • 1
  • F. Stefani
    • 1
  • D. Lucas
    • 1
  • S. Eckert
    • 1
  • G. Gerbeth
    • 1
  1. 1.Institute of Fluid DynamicsHelmholtz-Zentrum Dresden-Rossendorf (HZDR)DresdenGermany

Personalised recommendations