Application of X-ray radioscopic methods for characterization of two-phase phenomena and solidification processes in metallic melts

  • Natalia Shevchenko
  • Stefan Boden
  • Sven Eckert
  • Dmitry Borin
  • Michael Heinze
  • Stefan Odenbach


X-ray attenuation techniques are an important diagnostic tool for investigating liquid metal two-phase flows or solidification studies in metallic alloys. X-ray visualization enables a general, intuitive understanding of flow phenomena or pattern formation in opaque liquid metal systems. Real-time and in-situ observations of the density distribution within thin solidifying samples achieve a spatial resolution of a few microns and contribute significantly to an improved understanding of dendritic growth processes. Moreover, X-ray radioscopy is a useful tool for a non-invasive, in-situ visualization and characterization of gas bubbles in nontransparent melts or for observations of the formation of metal foams. In this paper we consider three different fields of application which are under intensive investigation at HZDR and TUD: the bottom-up solidification of Ga-In alloys under the influence of buoyancy-driven and electromagnetically driven convection, the injection of Ar gas into liquid GaInSn, the study of Al foams with respect to foam formation and the characterization of their internal structure.


Foam Liquid Metal European Physical Journal Special Topic Lorentz Force Mushy Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Curreri, W.F. Kaukler, Metall. Mat. Trans. A 27, 801 (1996)CrossRefGoogle Scholar
  2. 2.
    R.H. Mathiesen, L. Arnberg, F. Mo, T. Weitkamp, A. Snigirev, Phys. Rev. Lett. 83, 5062 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    H. Yasuda, I. Ohnaka, K. Kawasaki, A. Sugiyama, T. Ohmichi, J. Iwane, K. Umetani, J. Cryst. Growth 262, 645 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    H. Nguyen-Thi, G. Reinhardt, A. Buffet, T. Schenk, N. Mangelinck-Noel, H. Jung, N. Bergeon, B. Billia, J. Hartwig, J. Baruchel, J. Cryst. Growth 310, 2906 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    S. Zabler, A. Rueda, A. Rack, H. Riesemeier, P. Zaslansky, I. Manke, F. Garcia-Moreno, J. Banhart, Acta Mater. 55, 5045 (2007)CrossRefGoogle Scholar
  6. 6.
    J.H. Lee, S. Liu, R. Trivedi, Metall. Mat. Trans. 36A, 3111 (2005)CrossRefGoogle Scholar
  7. 7.
    A.N. Turchin, D.G. Eskin, L. Katgerman, Mat. Sci. Eng. A 413-414, 98 (2005)CrossRefGoogle Scholar
  8. 8.
    J.E. Spinelli, D.M. Rosa, I.L. Ferreira, A. Garcia, Mat. Sci. Eng. A 383, 271 (2004)Google Scholar
  9. 9.
    B. Willers, S. Eckert, U. Michel, I. Haase, G. Zouhar, Mat. Sci. Eng. A 402, 55 (2005)CrossRefGoogle Scholar
  10. 10.
    B.T. Murray, A.A. Wheeler, M.E. Glicksman, J. Cryst. Growth 154, 386 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    M. Zhang, T. Maxworthy, J. Fluid Mech. 470, 247 (2002)ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    R.H. Mathiesen, L. Arnberg, K. Ramsøskar, T. Weitkamp, C. Raur, A. Snigirev, Metall. Mater. Trans. B 33, 613 (2002)CrossRefGoogle Scholar
  13. 13.
    R.H. Mathiesen, L. Arnberg, Acta Mater. 53, 947 (2005)CrossRefGoogle Scholar
  14. 14.
    H. Yasuda, Y. Yamamoto, N. Nakatsuka, M. Yoshiya, T. Nagira, A. Sugiyama, I. Ohnaka, K. Uesugi, K. Umetani, Int. J. Cast. Met. Res. 22, 15 (2009)CrossRefGoogle Scholar
  15. 15.
    J.N. Koster, T. Seidel, R. Derebail, J. Fluid Mech. 343, 29 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    J.N. Koster, R. Derebail, A. Grötzbach, Appl. Phys. A 64, 45 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    S. Boden, S. Eckert, B. Willers, G. Gerbeth, Metall. Mat. Trans. A 39, 613 (2008)CrossRefGoogle Scholar
  18. 18.
    S. Boden, S. Eckert, G. Gerbeth, Mater. Letters 64, 1340 (2010)CrossRefGoogle Scholar
  19. 19.
    N. Shevchenko, S. Boden, S. Eckert, G. Gerbeth, IOP Conf. Series: Mater. Sci. Eng. 33, 012035 (2012)CrossRefGoogle Scholar
  20. 20.
    B.K.P. Horn, B.G. Schunck, Artificial Intell. 17, 185 (1981)CrossRefGoogle Scholar
  21. 21.
    A. Fuganti, et al., Adv. Eng. Mat. 2, 200 (2000)CrossRefGoogle Scholar
  22. 22.
    J. Banhart, Progr. Mater. Sci. 46, 559 (2001)CrossRefGoogle Scholar
  23. 23.
    F. Simancík, Proc. Int. Conference on Metal Foams and Porous Metal Structures (Bremen, 1999)Google Scholar
  24. 24.
    T. Wübben, Ph.D. thesis, University of Bremen, 2003Google Scholar
  25. 25.
    T. Wübben, H. Stanzick, J. Banhart, S. Odenbach J. Phys.: Condens. Matter 15, 427 (2003)CrossRefGoogle Scholar
  26. 26.
    C. Zhang, S. Eckert, G. Gerbeth, ISIJ Int. 47, 795 (2007)CrossRefGoogle Scholar
  27. 27.
    D. Borin, P. Nikrityuk, S. Odenbach, Appl. Rheology 19, 61995 (2009)Google Scholar
  28. 28.
    O. Brunke, S. Odenbach, F. Beckmann, Proc. SPIE 5535, 453 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    M.v. Ginkel, et al., The Delft Image Processing LibraryGoogle Scholar
  30. 30.
    O. Brunke, S. Odenbach, F. Beckmann, European Phys. J.: Appl. Phys. 29, 73 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    J.F. Delerue, et al., Phys. Chem. Earth (A) 24, 639 (1999)CrossRefGoogle Scholar
  32. 32.
    J.F. Delerue, E. Perrier, Comp. Geoscience 28, 1041 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    C.-J. Yu, H.H. Eifert, J. Banhart, J. Baumeister, Mater. Res. Innovation 2, 181 (1998)CrossRefGoogle Scholar
  34. 34.
    H.D. Kunze, J. Baumeister, J. Banhart, M. Weber, Wissenschaft Praxis-Band 9, 330 (1993)Google Scholar
  35. 35.
    O. Brunke, S. Odenbach, J. Phys.: Condens. Matter 18, 6493 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    K.G. Davis, G.A. Irons, R.I.L. Guthrie, Metall. Trans. 9B, 721 (1978)Google Scholar
  37. 37.
    M. Iguchi, T. Chihara, N. Takanashi, Y. Ogawa, N. Tokumitsu, Z. Morita, ISIJ Int. 35, 1354 (1995)CrossRefGoogle Scholar
  38. 38.
    M.C. Baker, H. Bonazza, Exp. Fluids 25, 61 (1998)CrossRefGoogle Scholar
  39. 39.
    V.F. Chevrier, A.W. Cramb, Metall. Mater. Trans. 31B, 537 (2000)Google Scholar
  40. 40.
    S.V. Gnyloskurenko, T. Nakamura, Mater. Trans. 44, 2298 (2003)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Natalia Shevchenko
    • 1
  • Stefan Boden
    • 1
  • Sven Eckert
    • 1
  • Dmitry Borin
    • 2
  • Michael Heinze
    • 2
  • Stefan Odenbach
    • 2
  1. 1.Institute of Fluid DynamicsHelmholtz-Zentrum Dresden-Rossendorf (HZDR)DresdenGermany
  2. 2.Institute of Fluid MechanicsTechnische Universität Dresden (TUD)DresdenGermany

Personalised recommendations