Advertisement

Flow measurements in liquid metals by means of the ultrasonic Doppler method and local potential probes

  • A. Cramer
  • S. Eckert
  • G. Gerbeth
Review

Abstract

Substantial research activities have been carried out at HZDR during the last 15 years on the development and qualification of various methods to measure the velocity field in liquid metal flows. In this paper we report on two complementary methods for measuring the local velocity. The potential difference probe is a local sensor which is immersed into the liquid. Such sensors are very effective for investigations of the turbulent fluctuations at a local point. However, the installation of the probe in the bulk of the liquid might disturb the flow to be measured. Ultrasonic techniques are non-invasive, but need a continuous path from the ultrasonic transducer to the liquid under investigation. The ultrasound Doppler method delivers instantaneous profiles of the local velocity. Experimental applications of these measuring techniques in diverse liquid metal flows under the influence of magnetic fields will be presented here showing the capabilities and limitations of both methods.

Keywords

Liquid Metal European Physical Journal Special Topic Ultrasonic Transducer Azimuthal Velocity Magnet Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Eckert, A. Cramer, G. Gerbeth, Velocity measurement techniques for liquid metal flows, in “Magnetohydrodynamics - Historical Evolution and Trends”, edited by S. Molokov, R. Moreau, H.K. Moffatt (Springer, 2007), p. 275Google Scholar
  2. 2.
    M. Faraday, Phil. Trans. Roy. Soc. 122, 163 (1832)CrossRefGoogle Scholar
  3. 3.
    Y. Takeda, Int. J. Heat Fluid Flow 7, 313 (1986)CrossRefGoogle Scholar
  4. 4.
    Y. Takeda, Nucl. Eng. Design 126, 277 (1991)CrossRefGoogle Scholar
  5. 5.
    Y. Takeda, Nucl. Techn. 79, 120 (1987)Google Scholar
  6. 6.
    D. Brito, H.C. Nataf, P. Cardin, J. Aubert. J.P. Masson, Exp. Fluids 31, 653 (2001)CrossRefGoogle Scholar
  7. 7.
    S. Eckert, G. Gerbeth, Exp. Fluids 32, 542 (2002)CrossRefGoogle Scholar
  8. 8.
    S. Eckert, G. Gerbeth, V. I. Melnikov, Exp. Fluids 35, 381 (2003)CrossRefGoogle Scholar
  9. 9.
    S. Eckert, B. Willers, G. Gerbeth, Metall. Mater. Trans. A 36, 267 (2005)CrossRefGoogle Scholar
  10. 10.
    K. Kikuchi, Y. Takeda, H. Obayashi, M. Tezuka, H. Sato, J. Nucl. Mater. 356, 273 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    L.P. Gorbachev, N.V. Nikitin, A.L. Ustinov, Magnetohydrodynamics 10, 406 (1974)Google Scholar
  12. 12.
    P.A. Davidson, J. Fluid Mech. 245, 669 (1992)ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    P.A. Davidson, J.C.R. Hunt, J. Fluid Mech. 185, 67 (1987)ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    A. Tsinober, E. Kit, M. Teitel, J. Fluid Mech. 175, 447 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    A. Kolin, Phys. Rev. 63, 218 (1943) 218Google Scholar
  16. 16.
    A. Kolin, J. Appl. Phys. 15, 150 (1944)ADSCrossRefGoogle Scholar
  17. 17.
    R. Ricou, C. Vives, Int. J. Heat Mass Trans. 25, 1579 (1982)CrossRefGoogle Scholar
  18. 18.
    T. Weissenfluh, Int. J. Heat Mass Trans. 28, 1563 (1985)CrossRefGoogle Scholar
  19. 19.
    Yu. Gelfgat, A. Gelfgat, Magnetohydrodynamics 40, 147 (2004)ADSGoogle Scholar
  20. 20.
    A. Cramer, K. Varshney, Th. Gundrum, G. Gerbeth, Flow Meas. Instrum. 17, 1 (2006)CrossRefGoogle Scholar
  21. 21.
    S. Eckert, G. Gerbeth, W. Witke, H. Langenbrunner, Int. J. Heat Fluid Flow 22, 358 (2001)CrossRefGoogle Scholar
  22. 22.
    A. Bojarevičs, A. Bojarevičs, Yu. Gelfgat, K. Pericleous, Magnetohydrodynamics 35, 205 (1999)zbMATHGoogle Scholar
  23. 23.
    E. Baake, B. Nacke, A. Umrashko, A. Jakovičs, Magnetohydrodynamics 39, 291 (2003)ADSGoogle Scholar
  24. 24.
    M. Kirpo, A. Jakovičs, E. Baake, B. Nacke, Proc. Int. Sci. Coll. on “Modelling for Materials Processing,” Rıga, Latvia 36, 36 (2006)Google Scholar
  25. 25.
    A. Bojarevičs, A. Cramer, Yu. Gelfgat, G. Gerbeth, Exp. Fluids 40, 257 (2006)CrossRefGoogle Scholar
  26. 26.
    B. Gallet, M. Berhanu, N. Mordant, Phys. Fluids 21, 085107 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    I. Grants, G. Gerbeth, Phys. Fluids 16, 2088 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    I. Grants, G. Gerbeth, J. Cryst. Growth 308, 290 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    A. Cramer, J. Pal, G. Gerbeth, Phys. Fluids 24, 045105 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    V.L. Newhouse, IEEE Trans. Sonics Ultrasonics 27, 50 (1980)CrossRefGoogle Scholar
  31. 31.
    Y. Takeda, J. Fluid Mech. 389, 81 (1999)ADSzbMATHCrossRefGoogle Scholar
  32. 32.
    T. Mashiko, Y. Tsuji, T. Mizuno, M. Sano, Phys. Rev. E 69, 036306 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Tsuji, T Mizuno, T. Mashiko, M. Sano, Phys. Rev. Lett. 94, 034501 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    T. Yanagisawa, Y. Yamagishi, Y. Hamano, Y. Tasaka, M. Yoshida, K. Yano, Y. Takeda, Phys. Rev. E 82, 016320 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    T. Yanagisawa, Y. Yamagishi, Y. Hamano, Y. Tasaka, Y. Takeda, Phys. Rev. E 83, 036307 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    D. Räbiger, S. Eckert, G. Gerbeth, Exp. Fluids 48, 233 (2010)CrossRefGoogle Scholar
  37. 37.
    T. Vogt, I. Grants, D. Räbiger, S. Eckert, G. Gerbeth, Exp. Fluids 52, 1 (2012)CrossRefGoogle Scholar
  38. 38.
    N. Mordant, J.-F. Pinton, Eur. Phys. J. B 18, 343 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    C. Zhang, S. Eckert, G. Gerbeth, Int. J. Multiphase Flow 31, 824 (2005)zbMATHCrossRefGoogle Scholar
  40. 40.
    C. Zhang, S. Eckert, G. Gerbeth, J. Fluid Mech. 575, 57 (2007)ADSzbMATHCrossRefGoogle Scholar
  41. 41.
    T. Wang, J. Wang, F. Ren, Y. Jin, Chem. Eng. J. 92, 111 (2003)CrossRefGoogle Scholar
  42. 42.
    P.A. Nikrityuk, M. Ungarish, K. Eckert, R. Grundmann, Phys. Fluids 17, 067101 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    I. Grants, G. Gerbeth, J. Fluid Mech. 463, 229 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  44. 44.
    S. Eckert, P.A. Nikrityuk, D. Räbiger, K. Eckert, G. Gerbeth, Metall. Mater. Trans. B 38, 977 (2007)CrossRefGoogle Scholar
  45. 45.
    D. Hurther, U. Lemmin, Meas. Sci. Technol. 9, 1706 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    O. Andreev, Y. Kolesnikov, A. Thess, Exp. Fluids 46, 77 (2009)CrossRefGoogle Scholar
  47. 47.
    Y. Takeda, H. Kikura, Exp. Fluids 32, 161 (2002)CrossRefGoogle Scholar
  48. 48.
    L. Capineri, M. Scabia, L. Masotti, Ultrasound Med. Biol. 28, 237 (2002)CrossRefGoogle Scholar
  49. 49.
    S. Franke, L. Büttner, J. Czarske, D. Räbiger, S. Eckert, Flow Meas. Instrum. 21, 402 (2010)CrossRefGoogle Scholar
  50. 50.
    R. Nauber, M. Burger, L. Büttner, S. Franke, D. Räbiger, S. Eckert, G. Gerbeth, K. Niemietz, O. Pätzold, J. Czarske, EJP-S 22 (2012)Google Scholar
  51. 51.
    A. Cramer, C. Zhang, S. Eckert, Flow Meas. Instrum. 15, 145 (2004)CrossRefGoogle Scholar
  52. 52.
    H.P. Greenspan, The theory of rotating fluids (Cambridge University Press, Cambridge, 1968)Google Scholar
  53. 53.
    E.R. Benton, C. Clark, Ann. Rev. Fluid Mech. 6, 257 (1974)ADSCrossRefGoogle Scholar
  54. 54.
    J. Stiller, K. Frāna, A. Cramer, Phys. Fluids 18, 074105 (2006)ADSCrossRefGoogle Scholar
  55. 55.
    K. Koal, J. Stiller, R. Grundmann, Phys. Fluids 19, 088107 (2007)ADSCrossRefGoogle Scholar
  56. 56.
    D. Räbiger, S. Eckert, G. Gerbeth, S. Franke, J. Czarske, Magnetohydrodynamics 48, 3 (2012)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Helmholtz-Zentrum Dresden-RossendorfDresdenGermany

Personalised recommendations