The European Physical Journal Special Topics

, Volume 219, Issue 1, pp 143–154 | Cite as

Evaporation of pinned sessile microdroplets of water on a highly heat-conductive substrate: Computer simulations

  • Sergey Semenov
  • Victor M. Starov
  • Ramon G. Rubio
Regular Article


The aim of the current numerical study is to investigate the influence of individual effects (kinetic effects, latent heat of vaporization, Marangoni convection, Stefan flow, droplet’s surface curvature) on the rate of evaporation of a water droplet placed on a highly heat conductive substrate for different sizes of the droplet (down to submicron sizes). We performed simulations for one particular set of parameters: the ambient relative air humidity is set to 70%, the ambient temperature is 20 C, the contact angle is 90, and the substrate material is copper. The Suggested model combines both diffusive and kinetic models of evaporation. The obtained results allow estimation of the characteristic droplet sizes where each of the mentioned above phenomena becomes important or can be neglected.


Contact Angle Droplet Size European Physical Journal Special Topic Contact Line Marangoni Convection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Sodtke, P. Stephan, Int. J. Heat Mass Transfer 50, 4089 (2007)CrossRefGoogle Scholar
  2. 2.
    W.-L. Cheng, F.-Y. Han, Q.-N. Liu, R. Zhao, H.-L. Fan, Energy 36, 249 (2011)CrossRefGoogle Scholar
  3. 3.
    Du Peng, Li Luhai, Zhao Wen, Leng Xian, Hu Xuwei, Adv. Mater. Res. 174, 358 (2011)Google Scholar
  4. 4.
    P.G. Campbell, L.E. Weiss, Expert Opin. Biol. Ther. 7, 1123 (2007)CrossRefGoogle Scholar
  5. 5.
    S.B. Fuller, E.J. Wilhelm, J.M. Jacobson, J. Microelectromech. Syst. 11, 54 (2002)CrossRefGoogle Scholar
  6. 6.
    T. Haschke, W. Wiechert, K. Graf, E. Bonaccurso, G. Li, F.T. Suttmeier, Nanoscale Microscale Thermophys. Eng. 11, 31 (2007)CrossRefGoogle Scholar
  7. 7.
    R. Pericet-Camara, E. Bonaccurso, K. Graf, Chem. Phys. Chem. 9, 1738 (2008)CrossRefGoogle Scholar
  8. 8.
    S. Karlsson, A. Rasmuson, I.N. Björn, S. Schantz, Powder Technol. 207, 245 (2011)CrossRefGoogle Scholar
  9. 9.
    J.H. Kim, W.-X. Shi, R.G. Larson, Langmuir 23, 755 (2007)CrossRefGoogle Scholar
  10. 10.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Phys. Rev. E 62, 756 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    G. Guena, C. Poulard, M. Voue, J.D. Coninck, A.M. Cazabat, Colloids Surf. A 291, 191 (2006)CrossRefGoogle Scholar
  12. 12.
    F. Girard, M. Antoni, K. Sefiane, Langmuir 24, 9207 (2008)CrossRefGoogle Scholar
  13. 13.
    H. Hu, R.G. Larson, J. Phys. Chem. B 110, 7090 (2006)CrossRefGoogle Scholar
  14. 14.
    K. Sefiane, S.K. Wilson, S. David, G.J. Dunn, B.R. Duffy, Phys. Fluids 21, 062101 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    W.D. Ristenpart, P.G. Kim, C. Domingues, J. Wan, H.A. Stone, Phys. Rev. Lett. 99, 234502 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    R. Bhardwaj, X. Fang, D. Attinger, New J. Phys. 11, 075020 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    S. David, K. Sefiane, L. Tadrist, Colloids Surf. A: Physicochem. Eng. Aspects 298, 108 (2007)CrossRefGoogle Scholar
  18. 18.
    S. Semenov, V.M. Starov, R.G. Rubio, H. Agogo, M.G. Velarde, Coll. Surf. A: Physicochem. Eng. Aspects 391, 135 (2011)CrossRefGoogle Scholar
  19. 19.
    S. Moosman, G.M. Homsy, J. Coll. Inter. Sci. 73, 212 (1980)CrossRefGoogle Scholar
  20. 20.
    V. Starov, M. Velarde, C. Radke, Dynamics of wetting and spreading in Surfactant Sciences Series, vol. 138 (Taylor&Frances, 2007)Google Scholar
  21. 21.
    V.S. Ajaev, T. Gambaryan-Roisman, P. Stephan, J. Coll. Inter. Sci. 342, 550 (2010)CrossRefGoogle Scholar
  22. 22.
    A.P. Kryukov, V. Yu. Levashov, S.S. Sazhin, Int. J. Heat Mass Transfer 47, 2541 (2004)zbMATHCrossRefGoogle Scholar
  23. 23.
    S.S. Sazhin, I.N. Shishkova, A.P. Kryukov, V.Yu. Levashov, M.R. Heikal, Int. J. Heat Mass Transfer 50, 2675 (2007)zbMATHCrossRefGoogle Scholar
  24. 24.
    S. Semenov, V.M. Starov, R.G. Rubio, M.G. Velarde, Coll. Surf. A: Physicochem. Eng. Aspects 372, 127 (2010)CrossRefGoogle Scholar
  25. 25.
    R. Krahl, M. Adamov, M.L. Aviles, E. Bänsch, A model for two phase flow with evaporation, Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS), ISSN 09468633, No. 899 (preprint) (2004)Google Scholar
  26. 26.
    K.P. Galvin, Chem. Eng. Sci. 60, 4659 (2005)CrossRefGoogle Scholar
  27. 27.
    P.H. Bligh, R. Haywood, Eur. J. Phys. 7, 245 (1986)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Dept. of Chemical EngineeringLoughborough UniversityLoughboroughUK
  2. 2.Dept. of Quimica Fisica IUniversidad ComplutenseMadridSpain

Personalised recommendations