The European Physical Journal Special Topics

, Volume 219, Issue 1, pp 121–130 | Cite as

On the transition from cellular to wavelike patterns during solutal Marangoni convection

  • Karin Schwarzenberger
  • Thomas Köllner
  • Hartmut Linde
  • Stefan Odenbach
  • Thomas Boeck
  • Kerstin Eckert
Regular Article


We study characteristic convection patterns emerging during the mass transfer of acetic acid from a glycerol-water layer to a superposed acetone layer by means of experiments and numerical simulations. The patterns form as a result of the stationary Marangoni instability. The initial phase of the pattern evolution is studied using high-resolution simulations. They show hierarchically ordered cellular structures which closely resemble experimental observations. In the later stages presently accessible to the experiments, the cells are locally replaced by relaxation oscillation waves. The emergence of these structures is favored when the experiment is performed in narrow cuvettes.


European Physical Journal Special Topic Relaxation Oscillation Marangoni Number Marangoni Convection Convection Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.V. Sternling, L.E. Scriven, AIChE J. 5, 514 (1959)CrossRefGoogle Scholar
  2. 2.
    H. Linde, K. Schwarzenberger, K. Eckert, in: Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics (Springer, 2013) (in press)Google Scholar
  3. 3.
    A. Orell, J.W. Westwater, AIChE J. 8, 350 (1962)CrossRefGoogle Scholar
  4. 4.
    H. Linde, E. Schwarz, Z. Phys. Chem. 224, 331 (1963)Google Scholar
  5. 5.
    E. Schwarz, Ph.D. thesis, (HU Berlin, 1967)Google Scholar
  6. 6.
    H. Linde, M.G. Velarde, A. Wierschem, W. Waldhelm, K. Loeschcke, A.Y. Rednikov, J. Colloid Interface Sci. 188, 16 (1997)CrossRefGoogle Scholar
  7. 7.
    H. Linde, M.G. Velarde, W. Waldhelm, K. Loeschcke, A. Wierschem, Ind. Eng. Chem. Res. 44, 1396 (2005)CrossRefGoogle Scholar
  8. 8.
    K. Eckert, M. Bestehorn, A. Thess, J. Fluid Mech. 356, 155 (1998)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    W. Schermuly, Ph.D. thesis, TU München, 1990Google Scholar
  10. 10.
    M. Hampe, W. Schermuly, Berichte Bunseng. Phys. Chem. 93, 988 (1989)CrossRefGoogle Scholar
  11. 11.
    W. Schermuly, E. Blaß, Chem. Eng. Technol. 14, 253 (1991)CrossRefGoogle Scholar
  12. 12.
    W. Schermuly, E. Blaß, Chem. Eng. Technol. 14, 186 (1991)CrossRefGoogle Scholar
  13. 13.
    H. Linde, E. Schwarz, K. Gröger, Chem. Eng. Sci. 22, 823 (1967)CrossRefGoogle Scholar
  14. 14.
    E. Schwarz, Wärme- und Stoffübertragung 3, 131 (1970)ADSCrossRefGoogle Scholar
  15. 15.
    A. Nepomnyashchy, I. Simanovskii, J. Legros, Interfacial Convection in Multilayer Systems (Springer, 2006)Google Scholar
  16. 16.
    T. Boeck, A. Nepomnyashchy, I. Simanovskii , A. Golovin, L. Braverman, A. Thess, Phys. Fluids 14, 3899 (2002)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    T. Boeck, A. Nepomnyashchy, I. Simanovskii, Fluid Dyn. Mater. Proc. 4, 11 (2008)Google Scholar
  18. 18.
    W. Merzkirch, Flow visualization (Academic Press, 1987)Google Scholar
  19. 19.
    H. Linde, P. Schwartz, H. Wilke, in: Dynamics and Instability of Fluid Interfaces (Springer, 1979)Google Scholar
  20. 20.
    K. Schwarzenberger, K. Eckert, S. Odenbach, Chem. Eng. Sci. 68, 530 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Karin Schwarzenberger
    • 1
  • Thomas Köllner
    • 2
  • Hartmut Linde
    • 3
  • Stefan Odenbach
    • 1
  • Thomas Boeck
    • 2
  • Kerstin Eckert
    • 1
  1. 1.Institute of Fluid Mechanics, Chair of MagnetofluiddynamicsTechnische Universität DresdenDresdenGermany
  2. 2.Institute of Thermodynamics and Fluid MechanicsTechnische Universität IlmenauIlmenauGermany
  3. 3.BerlinGermany

Personalised recommendations