The European Physical Journal Special Topics

, Volume 219, Issue 1, pp 111–119 | Cite as

Experimental investigation of 3-dimensional wavy liquid films under the coupled influence of thermo-capillary and electrostatic forces

  • Wilko Rohlfs
  • Georg F. Dietze
  • Herman D. Haustein
  • Reinhold Kneer
Regular Article


Three-dimensional interfacial waves developing on the free surface of falling liquid films are known to intensify heat and mass transfer. In this context, the present paper studies the effect of electrostatic as well as of thermo-capillary forces on a falling film of a dielectric liquid. Therefore, measurements of the local film thickness using a confocal chromatic imaging method were performed under isothermal and heated conditions. The experimental results show that both forces destabilize the flow. It is found, that the application of an additional electric field under heating conditions enhances the generation of rivulets, thereby reducing the overall heat transfer coefficient.


Wall Temperature European Physical Journal Special Topic Copper Plate Wave Crest Spanwise Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Scheid, S. Kalliadasis, C. Ruyer-Quil, P. Colinet, Phys. Rev. E 78, 066311 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    V.V. Lel, A. Kellermann, G.F. Dietze, R. Kneer, A.N. Pavlenko, Exp. Fluids 44, 341 (2008)CrossRefGoogle Scholar
  3. 3.
    K. Yamashita, A. Yabe, J. Heat Transfer 119, 339 (1997)CrossRefGoogle Scholar
  4. 4.
    J. Darabi, M.M. Ohadi, S.V. Desiatoun, J. Heat Transfer 122, 741 (2000)CrossRefGoogle Scholar
  5. 5.
    W. Rohlfs, G.F. Dietze, H.D. Haustein, O. Yu. Tsvelodub, R. Kneer, Exp. Fluids 53, 1045 (2012)CrossRefGoogle Scholar
  6. 6.
    L. Landau, E. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, Oxford, 1975)Google Scholar
  7. 7.
    D. Griffiths, Introduction to Electrodynamics, 3rd ed. (Pearson Education, Delhi, 2006)Google Scholar
  8. 8.
    G. Tomar, D. Gerlach, G. Biswas, N. Alleborn, A. Sharma, F. Durst, S. Welch, A. Delgado, J. Computat. Phys. 227, 1267 (2007)Google Scholar
  9. 9.
    P. Di Marco, W. Grassi, Proc. 12th UIT National Conference, L’Aquila (I), 299 (1994)Google Scholar
  10. 10.
    P. Nosoko, P.N. Yoshimura, T. Nagata O.K., Chem. Eng. Sci. 51, 725 (1996)CrossRefGoogle Scholar
  11. 11.
    J. Cohen-Sabban, J. Gaillard-Groleas, P.J. Crepin, Proceedings of SPIE 4449, 178 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    V.V. Lel, F. Al-Sibai, R. Kneer, Exp. Fluids 39, 856 (2005)CrossRefGoogle Scholar
  13. 13.
    G.F. Dietze, Flow separation in falling liquid films, Ph.D. thesis, RWTH Aachen, 2010Google Scholar
  14. 14.
    G.F. Dietze, R. Kneer, Front. Heat Mass Transfer, 2, 033001 (2011)Google Scholar
  15. 15.
    B. Scheid, C. Ruyer-Quil, P. Manneville, J. Fluid Mech. 538, 223 (2005)ADSzbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Wilko Rohlfs
    • 1
  • Georg F. Dietze
    • 2
  • Herman D. Haustein
    • 1
  • Reinhold Kneer
    • 1
  1. 1.Institute of Heat and Mass TransferRWTH Aachen UniversityAachenGermany
  2. 2.DAAD Fellow at Laboratoire FAST — UMR CNRS 7608Université Pierre et Marie CurieOrsayFrance

Personalised recommendations