The European Physical Journal Special Topics

, Volume 219, Issue 1, pp 99–110 | Cite as

Effect of the direction of the electric field on the interfacial instability between a passive fluid and a viscoelastic polymer

  • A. Nurocak
  • A. Kerem Uguz
Regular Article


In this paper, we study the linear stability of the interface between an Upper Convective Maxwell fluid and a hydrodynamically passive fluid subject to an electric field applied either parallel or normal to the flat interface between the two fluids. The fluids are leaky-dielectric and we apply surface-coupled model. We solve the model equations analytically and study the dispersion and neutral curves for various parameters representing the applied potential, the fluid’s elasticity, the physical and the electrical properties of the fluids, and the heights of the fluids in the presence of both normal and parallel electric fields. It is found that the critical wavenumber is independent of the Weissenberg number. However, increasing the Weissenberg number increases the maximum growth rate for both the normal and the parallel fields. The critical wavenumber increases with the dimensionless applied voltage for the normal field. Lastly for the normal field, for some values of the dimensionless parameters, the growth rate reached very large values representing some type of singularity as has been observed in the literature. However, for the same values of the parameters no singularity is observed for the parallel field.


Dispersion Curve European Physical Journal Special Topic Linear Stability Analysis Deborah Number Weissenberg Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.M. Whitesides, Nature 442, 368 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    S.L. Anna, N. Bontoux, H.A. Stone, Appl. Phys. Lett. 82, 364 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    A.D. Stroock, S.K. Dertinger, G.M. Whitesides, A. Ajdari, Anal. Chem. 74, 5306 (2002)CrossRefGoogle Scholar
  4. 4.
    O. Ozen, N. Aubry, D. Papageorgiou, P. Petropoulos, Phys. Rev. Lett. 96, 144501 (2006a)ADSCrossRefGoogle Scholar
  5. 5.
    J.R. Melcher, W.J. Schwarz, Phys. Fluids 17, 2604 (1968)ADSCrossRefGoogle Scholar
  6. 6.
    K. Abdella, H. Rasmussen, J. Comput. Appl. Math. 78, 33 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    V. Shankar, A. Sharma, J. Colloid Interface Sci. 274, 294 (2004)CrossRefGoogle Scholar
  8. 8.
    R.V. Craster, O.K. Matar, Phys. Fluids 17, 032104 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    R.M. Thaokar, V. Kumaran, Phys. Fluids 17, 084104 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    O. Ozen, N. Aubry, D. Papageorgiou, P. Petropoulos, Electrochim. Acta 51, 5316 (2006b)CrossRefGoogle Scholar
  11. 11.
    F. Li, O. Ozen, A. Aubry, D.T. Papageorgiou, P.G. Petropoulos, J. Fluid Mech. 583, 347 (2007)ADSzbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A.K. Uguz, O. Ozen, N. Aubry, Phys. Fluids 20, 031702 (2008a)ADSCrossRefGoogle Scholar
  13. 13.
    A.K. Uguz, N. Aubry, Phys. Fluids 20, 092103 (2008b)ADSCrossRefGoogle Scholar
  14. 14.
    P. Gambhire, R.M. Thaokar, Eur. Phys. J. E 34, 84.1 (2011)CrossRefGoogle Scholar
  15. 15.
    N.T. Eldabe, J. Math. Phys. 28, 2791 (1987)ADSzbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    S.Y. Chou, L. Zhuang, J. Vac. Sci. Technol. 17, 3197 (1999a)Google Scholar
  17. 17.
    S.Y. Chou, L. Zhuang, L. Guo, Appl. Phys. Lett. 75, 1004 (1999b)ADSCrossRefGoogle Scholar
  18. 18.
    L. Wu, S.Y. Chou, J. Non-Newton. Fluid Mech. 125, 91 (2005)zbMATHCrossRefGoogle Scholar
  19. 19.
    G. Tomar, V. Shankar, A. Sharma, G. Biswas, J. Non-Newton. Fluid Mech. 143, 120 (2007)zbMATHCrossRefGoogle Scholar
  20. 20.
    G. Ersoy, A.K. Uguz, Fluid Dyn. Res. 44, 031406 (2012)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    L.E. Johns, R. Narayanan, Interfacial Instability (Springer-Verlag , New York, 2002)Google Scholar
  22. 22.
    A. Castellanos, A. Gonzalez, IEEE Trans. Dielectr. Electr. Insul. 5, 334 (1998)CrossRefGoogle Scholar
  23. 23.
    D.T. Papageorgiou, P.G. Petropoulos, J. Fluid Mech. 50, 223 (2004)zbMATHMathSciNetGoogle Scholar
  24. 24.
    S. Wu, J. Bandrup, E.H. Immergut, Polymer Handbook (Wiley-Interscience, New York, 1989), p. 414Google Scholar
  25. 25.
    L. Kubisz, A. Skumiel, T. Hornowski, A. Szlaferek, E. Pankowski, J. Phys.: Condens. Matter 20, 204118 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    J. Mark, Polymer Data Handbook, 2nd edn. (Oxford University Press, New York, 2009)Google Scholar
  27. 27.
    Y. Hu, X. Chen, G.M. Whitesides, J.J. Vlassak, Z. Suo, J. Mater. Res. 26, 785 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    N.V. Bhat, N.V. Joshi, J. Appl. Polym. Sci. 50, 1423 (1993)CrossRefGoogle Scholar
  29. 29.
    B. Purnode, M.J. Crochet, J. Non-Newton. Fluid Mech. 77, 1 (1998)zbMATHCrossRefGoogle Scholar
  30. 30.
    A. Kreiba, M.S. thesis, Concordia University, Canada, 2001Google Scholar
  31. 31.
    H.B.M. Kopperud, F.K. Hansen, Macromolecules, 34, 5635 (2001)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Department of Chemical EngineeringBogazici UniversityBebek, IstanbulTurkey

Personalised recommendations