On the different manifestations of particle accumulation structures (PAS) in thermocapillary flows

  • H. C. Kuhlmann
  • F. H. Muldoon
Regular Article


Particle de-mixing in flows in liquid-bridges driven by the Marangoni effect is investigated using primarily analytical models of the flow. The mechanism of particle–free-surface collisions is shown to explain the formation of experimentally observed particle depletion zones. This mechanism causes a mapping (or transfer) of particles moving on certain streamlines to other streamlines resulting in creation of a distinct depletion zone. Moreover, we demonstrate line-like particle accumulation along a chaotic streamline corresponding to SL2-PAS which is closed by a trajectory segment which is created by particle–free-surface interaction. The resulting limit cycle is stable due to the combined properties of the bulk transport and gathering at the free surface.


European Physical Journal Special Topic Liquid Bridge Marangoni Number Depletion Zone Stream Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Schwabe, P. Hintz, S. Frank, Microgravity Sci. Technol. 9, 163 (1996)Google Scholar
  2. 2.
    D. Schwabe, S. Frank, Adv. Space Res. 23, 1191 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    S. Tanaka, H. Kawamura, I. Ueno, D. Schwabe, Phys. Fluids 18, 067103 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    D. Schwabe, S. Tanaka, A. Mizev, H. Kawamura, Microgravity Sci. Technol. 18, 117 (2006)CrossRefGoogle Scholar
  5. 5.
    D. Schwabe, A.I. Mizev, M. Udhayasankar, S. Tanaka, Phys. Fluids 19, 072102 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Abe, I. Ueno, H. Kawamura, Microgravity Sci. Technol. 19, 84 (2007)CrossRefGoogle Scholar
  7. 7.
    H.C. Kuhlmann, E. Hofmann, Eur. Phys. J. Special Topics 192, 3 (2011), ISSN 1951-6355, URLADSCrossRefGoogle Scholar
  8. 8.
    D. Melnikov, D. Pushkin, V. Shevtsova, Eur. Phys. J. Special Topics 192, 29 (2011), ISSN 1951-6355, URLADSCrossRefGoogle Scholar
  9. 9.
    E. Hofmann, H.C. Kuhlmann, Phys. Fluids 23, 0721106 (2011)CrossRefGoogle Scholar
  10. 10.
    D.O. Pushkin, D.E. Melnikov, V.M. Shevtsova, Phys. Rev. Lett. 106, 234501 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    H.C. Kuhlmann, F.H. Muldoon, Phys. Rev. E 85, 046310 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    H.C. Kuhlmann, F.H. Muldoon, Phys. Rev. Lett. 108, 249401 (2012), URLADSCrossRefGoogle Scholar
  13. 13.
    D.O. Pushkin, D.E. Melnikov, V.M. Shevtsova, Phys. Rev. Lett. 108, 249402 (2012), URLADSCrossRefGoogle Scholar
  14. 14.
    F.H. Muldoon, H.C. Kuhlmann, Int. J. Multiphase Flow (submitted) (2012)Google Scholar
  15. 15.
    J. Leypoldt, H.C. Kuhlmann, H.J. Rath, J. Fluid Mech. 414, 285 (2000)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    F.H. Muldoon, H.C. Kuhlmann, Physica D (submitted) (2012)Google Scholar
  17. 17.
    I. Ueno, S. Tanaka, H. Kawamura, Phys. Fluids 15, 408 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    H.C. Kuhlmann, F.H. Muldoon, J. Jpn. Soc. Microgravity Appl. 29, 64 (2012)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Institute of Fluid Mechanics and Heat TransferVienna University of TechnologyViennaAustria

Personalised recommendations