Advertisement

Influence of density stratification on stability of a two-layer binary-fluid system with a diffuse interface

  • O. A. Frolovskaya
  • A. A. Nepomnyashchy
Regular Article
  • 96 Downloads

Abstract

A system of two layers separated by a diffuse interface which is created due to a phase separation in a binary liquid in the gravity field, is considered. The influence of the density stratification and the gravity on the stabilization of the solution is studied. The stability of two-layer base solutions with respect to long-wave disturbances in the framework of the linear stability analysis is investigated in the case of small density ratio and large Galileo number. It is found that the action of gravity can stabilize the equilibrium state.

Keywords

European Physical Journal Special Topic Capillary Number Linear Stability Analysis Marangoni Number Heavy Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28, 258 (1958)ADSCrossRefGoogle Scholar
  2. 2.
    J.D. Van der Waals, J. Stat. Phys. 20, 197 (1979)MathSciNetADSCrossRefzbMATHGoogle Scholar
  3. 3.
    P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    J. Lowengrub, L. Truskinovsky, Proc. R. Soc. London 454, 2617 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    D.M. Anderson, G.B. McFadden, A.A. Wheeler, Annu. Rev. Fluid Mech. 30, 139 (1998)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    H. Abels, E. Feireisl, Preprint, MPI MIS Leipzig 74 (2007)Google Scholar
  7. 7.
    V.V. Khatavkar, P.D. Anderson, P.C. Duineveld, H.E.H. Meijer, J. Fluid Mech. 581, 97 (2007)MathSciNetADSCrossRefzbMATHGoogle Scholar
  8. 8.
    U. Thiele, S. Madruga, L. Frastia, Phys. Fluids 19, 122106 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    O.A. Frolovskaya, A.A. Nepomnyashchy, A. Oron, A.A. Golovin, Phys. Fluids 20, 112105 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    S. Madruga, U. Thiele, Phys. Fluids 21, 062104 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M. Verschueren, Ph.D. thesis Eindhoven University of Technology, 1999, p. 81Google Scholar
  12. 12.
    A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 3433 (1996)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Lavrentyev Institute of Hydrodynamics SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Department of MathematicsTechnion — Israel Institute of TechnologyHaifaIsrael

Personalised recommendations