Numerical simulation of an evaporative meniscus on a moving substrate

  • Frédéric Doumenc
  • Béatrice Guerrier
Regular Article


A hydrodynamic model based on lubrication theory has been developed to describe an evaporative meniscus in a complete wetting configuration, when evaporation takes place in ambient air. We focus on combined effects of evaporation and the substrate motion on the effective contact angle. Numerical simulations show two distinct regimes when varying the substrate velocity on several orders of magnitude. At a small velocity, the effective contact angle is governed by evaporation and is independent of the substrate velocity, while the substrate motion is dominant at a high velocity. In the latter case, a Landau-Levich regime is obtained for the receding contact line, and a Cox-Voinov regime for the advancing contact line. Finally, we use our numerical results to test the simplified model developed by Pham et al. [5,6].


Contact Angle EUROPEAN Physical Journal Special Topic Contact Line Capillary Number Disjoin Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.C. Wayner, Langmuir 9, 294 (1993)CrossRefGoogle Scholar
  2. 2.
    C. Bourgès-Monnier, M.E.R. Shanahan, Langmuir 11, 2820 (1995)CrossRefGoogle Scholar
  3. 3.
    C. Poulard, G. Guéna, A.M. Cazabat, A. Boudaoud, M. Ben Amar, Langmuir 21, 8226 (2005)CrossRefGoogle Scholar
  4. 4.
    G. Guéna, P. Allençon, A.M. Cazabat, Coll. Surf. 300, 307 (2007)CrossRefGoogle Scholar
  5. 5.
    C.T. Pham, G. Berteloot, F. Lequeux, L. Limat, Europhys. Lett. 92, 54005 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    C.T. Pham, G. Berteloot, F. Lequeux, L. Limat, Europhys. Lett. 93, 69901 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Phys. Rev. E 62, 756 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    J. Eggers, L.M. Pismen, Phys. Fluids 22, 112101 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    F. Doumenc, B. Guerrier, Eur. Phys. J. Special Topics 197, 281 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    F. Doumenc, B. Guerrier, Langmuir 26, 13959 (2010)CrossRefGoogle Scholar
  11. 11.
    A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    D. Qu, E. Ramé, S. Garoff, Phys. fluids 14, 1154 (2002)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.UMR 7608, Lab. FASTUPMC Univ. Paris 06, Univ. Paris-Sud, CNRSOrsayFrance

Personalised recommendations