Advertisement

The European Physical Journal Special Topics

, Volume 218, Issue 1, pp 1–70 | Cite as

Faddeev random phase approximation applied to molecules

  • Matthias DegrooteEmail author
Review
  • 169 Downloads

Abstract

The Faddeev Random Phase Approximation (FRPA) is a Green’s function method which couples collective degrees of freedom to the single particle motion by resumming an infinite number of Feynman diagrams. The Faddeev technique is applied to describe the two-particle-one-hole (2p1h) and two-hole-one-particle (2h1p) Green’s function in terms of non-interacting propagators and kernels for the particle-particle (pp) and particle-hole (ph) interactions. This results in an equal treatment of the intermediary pp and ph channels. In FRPA both the pp and ph phonons are calculated on the random phase approximation (RPA) level. In this work the equations that lead to the FRPA eigenvalue problem are derived. The method is then applied to atoms, small molecules and the Hubbard model, for which the ground state energy and the ionization energies are calculated. Special attention is directed to the RPA instability in the dissociation limit of diatomic molecules and in the Hubbard model. Several solutions are proposed to overcome this problem.

Keywords

European Physical Journal Special Topic Quantum Monte Carlo Polarization Propagator Physical Journal Special Topic Table Faddeev Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11734_2013_1842_MOESM1_ESM.pdf (273 kb)
Supplementary material, approximately 273 KB.

References

  1. 1.
    S.K.Adhikari, W.Glöckle, Phys. Rev. C 19, 616 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    F.Aryasetiawan, O.Gunnarsson, Reports Progr. Phys. 61, 237 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    K.Arita, H.Horie, Nucl. Phys. A 173, 97 (1971)ADSCrossRefGoogle Scholar
  4. 4.
    X.Blase, C.Attaccalite, V.Olevano, Phys. Rev. B 83, 115103 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    C.Barbieri, Self-Consistent Green’s Function Study of Low-Energy Correlations in 16O. Ph.D. dissertation, Washington University in Saint Louis, Aug 2002Google Scholar
  6. 6.
    G.Baym, Phys. Rev. 127, 1391 (1962)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    C.Barbieri, W.H.Dickhoff, Phys. Rev. C 65, 064313 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    C.Barbieri, W.H.Dickhoff, Phys. Rev. C 68, 014311 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    G.E.Brown, J.A.Evans, D.J.Thouless, Nucl. Phys. 24, 1 (1961)CrossRefMathSciNetGoogle Scholar
  10. 10.
    C.Barbieri, M.Hjorth-Jensen, Phys. Rev. C 79, 064313 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    G.Baym, L.P.Kadanoff, Phys. Rev. 124, 287 (1961)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    D.Bohm, D.Pines, Phys. Rev. 82, 625 (1951)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    D.Bohm, D.Pines, Phys. Rev. 92, 609 (1953)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    The basis set exchange. https://bse.pnl.gov/bse/portal
  15. 15.
    N.E.Bickers, D.J.Scalapino, S.R.White, Phys. Rev. Lett. 62, 961 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    C.Barbieri, D.Van Neck, W.H.Dickhoff, Phys. Rev. A 76, 052503 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    C.Barbieri, D.Van Neck, M.Degroote, Phys. Rev. A 85, 012501 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 15a, http://cccbdb.nist.gov/, April 2010
  19. 19.
    S.J.Chakravorty, E.R.Davidson, J. Phys. Chem. 100, 6167 (1996)CrossRefGoogle Scholar
  20. 20.
    L.S.Cederbaum, W.Domcke, J.Schirmer, Phys. Rev. A 22, 206 (1980)ADSCrossRefGoogle Scholar
  21. 21.
    L.S.Cederbaum, W.Domcke, J.Schirmer, W.von Niessen, Correlation Effects in the Ionization of Molecules: Breakdown of the Molecular Orbital Picture (John Wiley & Sons, Inc., 2007), p. 115Google Scholar
  22. 22.
    D.M.Ceperley, L.Mitas, Quantum Monte Carlo Methods in Chemistry, edited by Prigogine I., Rice S.A., New Methods in Computational Quantum Mechanics Advances in Chemical Physics, vol. XCIII (1996)Google Scholar
  23. 23.
    D.M.Ceperley, Introduction to Quantum Monte Carlo Methods Applied to the Electron Gas, edited by Giuliani G.F. and Vignale G., Proceedings of the International School of Physics Enrico Fermi, Course CLVII (IOS Press, Amsterdam, 2004), p. 3Google Scholar
  24. 24.
    F.Caruso, P.Rinke, X.Ren, M.Scheffler, A.Rubio, Phys. Rev. B 86, 081102 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    D.Danovich, Wiley Interdisciplinary Reviews: Computational Molecular Science 1, 377 (2011)Google Scholar
  26. 26.
    NIST Standard Reference Database. NIST atomic spectra database,http://physics.nist.gov/PhysRefData/ASD/in-dex.html
  27. 27.
    C.Dal Cappello, Z.Rezkallah, S.Houamer, I.Charpentier, P.A.Hervieux, M.F.Ruiz-Lopez, R.Dey, A.C.Roy, Phys. Rev. A 84, 032711 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    E.R.Davidson, S.A.Hagstrom, S.J.Chakravorty, V.M.Umar, C.F.Fischer, Phys. Rev. A 44, 7071 (1991)ADSCrossRefGoogle Scholar
  29. 29.
    W.H.Dickhoff, D.V.Neck, Many-Body Theory Exposed! Propagator Description of Quantum Mechanics in Many-Body Systems (World Scientific Publishing Company, 2005)Google Scholar
  30. 30.
    M.Degroote, D.V.Neck, C.Barbieri, Comput. Phys. Comm. 182, 1995 (2011) Computer Physics Communications Special Edition for Conference on Computational Physics Trondheim, Norway, June 23–26, 2010Google Scholar
  31. 31.
    Y.Dewulf, D.V.Neck, L.V.Daele, M.Waroquier, Phys. Lett. B 396, 7 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    J.Dukelsky, P.Schuck, Nucl. Phys. A 512, 466 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    M.Deleuze, M.K.Scheller, L.S.Cederbaum, J. Chem. Phys. 103, 3578 (1995)ADSCrossRefGoogle Scholar
  34. 34.
    M.Degroote, D.Van Neck, C.Barbieri, Phys. Rev. A 83, 042517 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    S.Ethofer, P.Schuck, Phys. Lett. A 29, 223 (1969)ADSCrossRefGoogle Scholar
  36. 36.
    S.Ethofer, P.Schuck, Z. Phys. A Hadrons Nucl. 228, 264 (1969)MathSciNetGoogle Scholar
  37. 37.
    L.D.Faddeev, Sov. Phys. JETP 12, 1014 (1961)MathSciNetGoogle Scholar
  38. 38.
    A.L.Fetter, J.D.Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, San Francisco, 1971)Google Scholar
  39. 39.
    V.Galitskii, Sov. Phys.–JETP 7, 1958Google Scholar
  40. 40.
    W.Glckle, The quantum mechanical few-body problem (Springer-Verlag, 1983)Google Scholar
  41. 41.
    M.Garca-Revilla, E.Francisco, A.Costales, A.M.Pends, J. Phys. Chem. A 116, 1237 (2012)CrossRefGoogle Scholar
  42. 42.
    C.Httig, in Response Theory and Molecular Properties (A Tribute to Jan Linderberg and Poul Jrgensen), edited by H.J. Jensen, vol. 50 of Advances in Quantum Chemistry (Academic Press, 2005), p. 37Google Scholar
  43. 43.
    L.Hedin, Phys. Rev. 139, A796 (1965)ADSCrossRefGoogle Scholar
  44. 44.
    T.Helgaker, T.A.Ruden, P.Jrgensen, J.Olsen, W.Klopper, J. Phys. Org. Chem. 17, 913 (2004)CrossRefGoogle Scholar
  45. 45.
    J.Hubbard, Proceedings of the Royal Society of London, Series A, Math. Phys. Sci. 276, 238 (1963)CrossRefGoogle Scholar
  46. 46.
    M.Jema, P.Schuck, Phys. At. Nucl. 74, 1139 (2011)CrossRefGoogle Scholar
  47. 47.
    M.Jemaï, P.Schuck, J.Dukelsky, R.Bennaceur, Phys. Rev. B 71, 085115 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    San-HuangKe, Phys. Rev. B 84, 205415 (2011)ADSCrossRefMathSciNetGoogle Scholar
  49. 49.
    K.Kimura, S.Katsumata, Y.Achiba, T.Yamazaki, S.Iwata, Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules (Halsted, New York, 1981)Google Scholar
  50. 50.
    M.I.Katsnelson, A.I.Lichtenstein, Eur. Phys. J. B 30, 9 (2002)ADSCrossRefGoogle Scholar
  51. 51.
    W.Kutzelnigg, Int. J. Quantum Chem. 109, 3858 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    J.Linderberg, Y.Öhrn, Propagators in Quantum Chemistry, 2nd ed. (2005)Google Scholar
  53. 53.
  54. 54.
    R.D.Mattuck, Physics, A Guide to Feynman Diagrams in the Many-Body Problem, 2nd ed. (Dover Publications, 1992)Google Scholar
  55. 55.
    I.E.McCarthy, R.Pascual, P.Storer, E.Weigold, Phys. Rev. A 40, 3041 (1989)ADSCrossRefGoogle Scholar
  56. 56.
    H.Müther, L.D.Skouras, Phys. Lett. B 306, 201 (1993)ADSCrossRefGoogle Scholar
  57. 57.
    H.Müther, P.U.Sauer, Computational Nuclear Physics 2: Nuclear Reactions, chapter The G-Matrix in Finite Nuclei (Springer, Berlin, 1993), p. 30Google Scholar
  58. 58.
    H.Müther, T.Taigel, T.T.S.Kuo, Nucl. Phys. A 482, 601 (1988)ADSCrossRefGoogle Scholar
  59. 59.
    N.Nakanishi, Progr. Theor. Phys. Suppl. 43, 1 (1969)ADSCrossRefzbMATHGoogle Scholar
  60. 60.
    P.Navrátil, B.R.Barrett, W.Glöckle, Phys. Rev. C 59, 611 (1999)ADSCrossRefGoogle Scholar
  61. 61.
    M.Nooijen, J.G.Snijders, Int. J. Quant. Chem. 44, 55 1992CrossRefGoogle Scholar
  62. 62.
    M.Nooijen, J.G.Snijders, Int. J. Quant. Chem. 48, 15 (1993)CrossRefGoogle Scholar
  63. 63.
    D.Van Neck, M.Waroquier, V.Van der Sluys, K.Heyde, Nucl. Phys. A 563, 1 (1993)ADSCrossRefGoogle Scholar
  64. 64.
    D.Van Neck, M.Waroquier, J.Ryckebusch, Nucl. Phys. A 530, 347 (1991)ADSCrossRefGoogle Scholar
  65. 65.
    G.Onida, L.Reining, A.Rubio, Rev. Mod. Phys. 74, 601 (2002)ADSCrossRefGoogle Scholar
  66. 66.
    J.V.Ortiz, J. Chem. Phys. 108, 1008 (1998)ADSCrossRefGoogle Scholar
  67. 67.
    D.Pines, D.Bohm, Phys. Rev. 85, 338 (1952)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  68. 68.
    M.Pernpointner, J. Chem. Phys. 121, 8782 (2004)ADSCrossRefGoogle Scholar
  69. 69.
    D.Pines, Elementary Excitations In Solids: Lectures On Phonons, Electrons, And Plasmons (Basic Books, 1971)Google Scholar
  70. 70.
    W.H.Press, S.A.Teukolsky, W.T.Vetterling, B.P.Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing (Cambridge University Press, 2007)Google Scholar
  71. 71.
    M.P.von Friesen, C.Verdozzi, C.-O.Almbladh, Phys. Rev. B 82, 155108 (2010)ADSCrossRefGoogle Scholar
  72. 72.
    R.G.Parr, W.Yang, Density functional theory of atoms and molecules (Oxford University Press, New York, 1989)Google Scholar
  73. 73.
    G.A.Rijsdijk, K.Allaart, W.H.Dickhoff, Nucl. Phys. A 550, 159 (1992)ADSCrossRefGoogle Scholar
  74. 74.
    P.Romaniello, F.Bechstedt, L.Reining, Phys. Rev. B 85, 155131 (2012)ADSCrossRefGoogle Scholar
  75. 75.
    G.A.Rijsdijk, W.J.W.Geurts, K.Allaart, W.H.Dickhoff, Phys. Rev. C 53, 201 (1996)ADSCrossRefGoogle Scholar
  76. 76.
    G.A.Rijsdijk, W.J.W.Geurts, M.G.E.Brand, K.Allaart, W.H.Dickhoff, Phys. Rev. C 48, 1752 (1993)ADSCrossRefGoogle Scholar
  77. 77.
    P.Romaniello, S.Guyot, L.Reining, J. Chem. Phys. 131, 154111 (2009)ADSCrossRefGoogle Scholar
  78. 78.
    C.Rostgaard, K.W.Jacobsen, K.S.Thygesen, Phys. Rev. B 81, 085103 (2010)ADSCrossRefGoogle Scholar
  79. 79.
    D.J.Rowe, Rev. Mod. Phys. 40, 153 (1968)ADSCrossRefGoogle Scholar
  80. 80.
    P.Ring, P.Schuck, The nuclear many-body problem (Springer-Verlag, New York, 1980)Google Scholar
  81. 81.
    M.Springer, F.Aryasetiawan, K.Karlsson, Phys. Rev. Lett. 80, 2389 (1998)ADSCrossRefGoogle Scholar
  82. 82.
    E.E.Salpeter, H.A.Bethem, Phys. Rev. 84, 1232 (1951)ADSCrossRefzbMATHGoogle Scholar
  83. 83.
    J.Schirmer, L.S.Cederbaum, J. Phys. B: At. Mol. Phys. 11, 1889 (1978)ADSCrossRefGoogle Scholar
  84. 84.
    A.Schindlmayr, Self-consistency and vertex corrections beyond the GW approximation [eprint arXiv:cond-mat/0206510], 2002Google Scholar
  85. 85.
    J.Schirmer, L.S.Cederbaum, O.Walter, Phys. Rev. A 28, 1237 (1983)ADSCrossRefGoogle Scholar
  86. 86.
    A.Stan, N.E.Dahlen, R.van Leeuwen, EPL (Europhys. Lett.) 76, 298 (2006)ADSCrossRefGoogle Scholar
  87. 87.
    A.Stan, N.E.Dahlen, R.van Leeuwen, J. Chem. Phys. 130, 114105 (2009)ADSCrossRefGoogle Scholar
  88. 88.
    P.Schuck, S.Ethofer, Nucl. Phys. A 212, 269 (1973)ADSCrossRefGoogle Scholar
  89. 89.
    A.Schindlmayr, R.W.Godby, Phys. Rev. Lett. 80, 1702 (1998)ADSCrossRefGoogle Scholar
  90. 90.
    G.E.Scuseria, T.M.Henderson, D.C.Sorensen, J. Chem. Phys. 129, 231101 (2008)ADSCrossRefGoogle Scholar
  91. 91.
    D.Semkat, D.Kremp, M.Bonitz, Contrib. Plasma Phys. 42, 31 (2002)ADSCrossRefGoogle Scholar
  92. 92.
    A.Szab, N.S.Ostlund, Modern Quantum Chemistry (Courier Dover Publications, 1989)Google Scholar
  93. 93.
    S.Schäfer, P.Schuck, Phys. Rev. B 59, 1712 (1999)ADSCrossRefGoogle Scholar
  94. 94.
    J.Schirmer, A.B.Trofimov, G.Stelter, J. Chem. Phys. 109, 4734 (1998)ADSCrossRefGoogle Scholar
  95. 95.
    P.Schuck, F.Villars, P.Ring, Nucl. Phys. A 208, 302 (1973)ADSCrossRefGoogle Scholar
  96. 96.
    F.S.M.Tsui, K.F.Freed, Chem. Phys. 5, 337 (1974)ADSCrossRefGoogle Scholar
  97. 97.
    D.J.Thouless, Nucl. Phys. 22, 78 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  98. 98.
    A.Thompson, X-ray data booklet, Lawrence Berkeley National Laboratory, Berkeley, CA, 2001Google Scholar
  99. 99.
    A.B.Trofimov, J.Schirmer, J. Chem. Phys. 123, 144115 (2005)ADSCrossRefGoogle Scholar
  100. 100.
    B.Verstichel, Variational determination of the two-particle density matrix as a quantum many-body technique. Ph.D. dissertation, Ghent University, 2012Google Scholar
  101. 101.
    W.von Niessen, J.Schirmer, L.S.Cederbaum, Comput. Phys. Reports 1, 57 (1984)ADSCrossRefGoogle Scholar
  102. 102.
    J.Čížek, J.Paldus, J. Chem. Phys. 47, 3976 (1967)ADSCrossRefGoogle Scholar
  103. 103.
    B.Verstichel, H.van Aggelen, D.Van Neck, P.Bultinck, S.De Baerdemacker, Comput. Phys. Comm. 182, 1235 (2011)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  104. 104.
    J.Winter, Nucl. Phys. A 194, 535 (1972)ADSCrossRefGoogle Scholar
  105. 105.
    R.B.Wiringa, Recent Developments in Nuclear Quantum Monte Carlo, edited by Danielewicz, P., Bulk Nuclear Properties, vol. 1128 of AIP Conference Proceedings, p. 1–10. Natl Superconduct Cyclot Lab; Argonne Natl Lab; Joint Inst Nucl Astrophys; Inst Nucl Theory, 2009. 5th Annual ANL/MSU/JINA/INT FRIB Thoery Workshop, Michigan State Univ. Natl. Superconduct Cyclotron Lab, East Lansing, MI, Nov. 19–22, 2008Google Scholar
  106. 106.
    O.Walter, J.Schirmer, J. Phys. B: At. Mol. Phys. 14, 3805 (1981)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Center for Molecular Modeling, CMMGhent UniversityZwijnaardeBelgium

Personalised recommendations