The European Physical Journal Special Topics

, Volume 217, Issue 1, pp 183–188 | Cite as

Giant vortex phase transition in rapidly rotating trapped Bose-Einstein condensates

  • Michele Correggi
  • Florian Pinsker
  • Nicolas RougerieEmail author
  • Jakob Yngvason


A Bose-Einstein condensate of cold atoms is a superfluid and thus responds to rotation of its container by the nucleation of quantized vortices. If the trapping potential is sufficiently strong, there is no theoretical limit to the rotation frequency one can impose to the fluid, and several phase transitions characterized by the number and distribution of vortices occur when it is increased from 0 to ∞. In this note we focus on a regime of very large rotation velocity where vortices disappear from the bulk of the fluid, gathering in a central hole of low matter density induced by the centrifugal force.


Vortex Centrifugal Force European Physical Journal Special Topic Vortex Core Critical Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Aftalion, Vortices in Bose-Einstein Condensates (Birkhäuser, Basel, 2006)Google Scholar
  2. 2.
    V. Bretin, S. Stock, Y. Seurin, J. Dalibard, Phys. Rev. Lett. 92, 050403 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    N.R. Cooper, Adv. Phys. 57, 539 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    M. Correggi, F. Pinsker, N. Rougerie, J. Yngvason, J. Stat. Phys. 143, 261 (2011)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    M. Correggi, F. Pinsker, N. Rougerie, J. Yngvason, Phys. Rev. A 84, 053614 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    M. Correggi, F. Pinsker, N. Rougerie, J. Yngvason, J. Math. Phys. 53, 095203 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    M. Correggi, N. Rougerie, J. Yngvason, Commun. Math. Phys. 303, 451 (2011)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    A.L. Fetter, Phys. Rev. A 64, 063608 (2001)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    A.L. Fetter, Rev. Mod. Phys. 81, 647 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    A.L. Fetter, B. Jackson, S. Stringari, Phys. Rev. A 71, 013605 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    U.R. Fischer, G. Baym, Phys. Rev. Lett. 90, 140402 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    H. Fu, E. Zaremba, Phys. Rev. A 73, 013614 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    K. Kasamatsu, M. Tsubota, M. Ueda, Phys. Rev. A 66, 053606 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    G.M. Kavoulakis, G. Baym, New J. Phys. 5, 51.1 (2003)CrossRefGoogle Scholar
  15. 15.
    J.K. Kim, A.L. Fetter, Phys. Rev. A 72, 023619 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    N. Rougerie, Archive Rational Mech. Anal. 203, 69 (2012)MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    E. Sandier, S. Serfaty, Vortices in the Magnetic Ginzburg-Landau Model (Birkhäuser, Basel, 2007)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Michele Correggi
    • 1
  • Florian Pinsker
    • 2
  • Nicolas Rougerie
    • 3
    Email author
  • Jakob Yngvason
    • 4
    • 5
  1. 1.Dipartimento di MatematicaUniversità degli Studi Roma TreRomaItaly
  2. 2.DAMTPUniversity of CambridgeCambridgeUK
  3. 3.Université Grenoble 1 & CNRS, LPMMC (UMR 5493)GrenobleFrance
  4. 4.Faculty of PhysicsUniversity of ViennaViennaAustria
  5. 5.Erwin Schrödinger Institute for Mathematical PhysicsViennaAustria

Personalised recommendations