The European Physical Journal Special Topics

, Volume 217, Issue 1, pp 169–175 | Cite as

Shear viscosity and spin sum rules in strongly interacting Fermi gases

  • Tilman Enss
Regular Article

Abstract

Fermi gases with short-range interactions are ubiquitous in ultracold atomic systems. In the absence of spin-flipping processes the number of atoms in each spin species is conserved separately, and we discuss the associated Ward identities. For contact interactions the spin conductivity spectral function σs(ω) has universal power-law tails at high frequency. We derive the spin f-sum rule and show that it is not affected by these tails in d < 4 dimensions. Likewise the shear viscosity spectral function η(ω) has universal tails; in contrast they modify the viscosity sum rule in a characteristic way.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    S. Tan, Ann. Phys. (NY) 323, 2971 (2008)ADSMATHCrossRefGoogle Scholar
  3. 3.
    S. Tan, Ann. Phys. (NY) 323, 2952 (2008)ADSMATHCrossRefGoogle Scholar
  4. 4.
    F. Werner, Y. Castin [arXiv:1001.0774]Google Scholar
  5. 5.
    F. Werner, Y. Castin, Phys. Rev. A 86, 013626 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    M. Barth, W. Zwerger, Ann. Phys. (NY) 326, 2544 (2011)ADSMATHCrossRefGoogle Scholar
  7. 7.
    M. Valiente, N.T. Zinner, K. Mølmer, Phys. Rev. A 84, 063626 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    E. Braaten, in The BCS-BEC Crossover and the Unitary Fermi Gas, edited by W. Zwerger (Springer, 2012), p. 193Google Scholar
  9. 9.
    A. Sommer, M. Ku, G. Roati, M.W. Zwierlein, Nature (London) 472, 201 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    G.M. Bruun, Phys. Rev. A 85, 013636 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    T. Enss, C. Küppersbusch, L. Fritz, Phys. Rev. A 86, 013617 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    T. Enss, R. Haussmann, Phys. Rev. Lett. 109, 195303 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    C. Cao, E. Elliott, J. Joseph, H. Wu, J. Petricka, T. Schäfer, J.E. Thomas, Science 331, 58 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    P. Massignan, G.M. Bruun, H. Smith, Phys. Rev. A 71, 033607 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    T. Enss, R. Haussmann, W. Zwerger, Ann. Phys. (NY) 326, 770 (2011)ADSMATHCrossRefGoogle Scholar
  16. 16.
    C. Chafin, T. Schäfer [arXiv:1209.1006]Google Scholar
  17. 17.
    P. Romatschke, R.E. Young [arXiv:1209.1604]Google Scholar
  18. 18.
    L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, 2003)Google Scholar
  19. 19.
    E. Taylor, M. Randeria, Phys. Rev. A 81, 053610 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    J. Hofmann, Phys. Rev. A 84, 043603 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    W.D. Goldberger, Z.U. Khandker, Phys. Rev. A 85, 013624 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    E. Taylor, M. Randeria, Phys. Rev. Lett. 109, 135301 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of quantum field theory in statistical physics (Dover, 1975)Google Scholar
  24. 24.
    Y. Nishida, D.T. Son, Phys. Rev. D 76, 086004 (2007)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    U. Behn, Phys. Stat. Solidi (b) 88, 699 (1978)ADSCrossRefGoogle Scholar
  26. 26.
    B. Bradlyn, M. Goldstein, N. Read, Phys. Rev. B 86, 245309 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    A.M. Polyakov, JETP 30, 1164 (1969)ADSGoogle Scholar
  28. 28.
    A.M. Polyakov, Zh. Eksp. Teor. Fiz. 57, 2144 (1969)Google Scholar
  29. 29.
    P. Nikolić, S. Sachdev, Phys. Rev. A 75, 033608 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    T. Enss, Phys. Rev. A 86, 013616 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Tilman Enss
    • 1
  1. 1.Physik DepartmentTechnische Universität MünchenGarchingGermany

Personalised recommendations