The European Physical Journal Special Topics

, Volume 217, Issue 1, pp 79–84 | Cite as

Momentum isotropisation in random potentials

  • T. Plisson
  • T. Bourdel
  • C. A. MüllerEmail author
Regular Article


When particles are multiply scattered by a random potential, their momentum distribution becomes isotropic on average. We study this quantum dynamics numerically and with a master equation. We show how to measure the elastic scattering time as well as characteristic isotropisation times, which permit to reconstruct the scattering phase function, even in rather strong disorder.


Elastic Scattering European Physical Journal Special Topic Master Equation Phase Function Momentum Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Roati, et al., Nature 453, 895 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    J. Billy, et al., Nature 453, 891 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    M. Robert-de-Saint-Vincent, et al., Phys. Rev. Lett. 104, 2 (2010)CrossRefGoogle Scholar
  4. 4.
    G. Labeyrie, T. Karpiuk, B. Grémaud, C. Miniatura, D. Delande, Europhys. Lett. 100, 66001 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    F. Jendrzejewski, et al., Phys. Rev. Lett. 109, 195302 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    S.S. Kondov, W.R. McGehee, J.J. Zirbel, B. DeMarco, Science 334, 66 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    F. Jendrzejewski, et al., Nature Phys. 8, 398 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    N. Cherroret, et al., Phys. Rev. A 85, 011604 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    T. Karpiuk, et al., Phys. Rev. Lett. 109, 190601 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    R.C. Kuhn, et al., Phys. Rev. Lett. 95, 250403 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    R.C. Kuhn, et al., New J. Phys. 9, 161 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    E. Akkermans, G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, 2007)Google Scholar
  13. 13.
    D. Vollhardt, P. Wölfle, Phys. Rev. B 22, 4666 (1980)ADSCrossRefGoogle Scholar
  14. 14.
    M. Hartung, et al., Phys. Rev. Lett. 101, 020603 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    C.A. Müller, Lect. Notes Phys. 768, 277 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    F. Eckert, T. Wellens, A. Buchleitner, J. Phys. A: Math. Theor. 45, 395101 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    B. Allard, et al., Phys. Rev. A 85, 033602 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    M.C. Beller, M.E.W. Reed, T. Hong, S.L. Rolston, New J. Phys. 14, 073024 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    S. Krinner, et al. [arXiv:1211.7272]Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Laboratoire Charles Fabry UMR 8501, Institut d’Optique, CNRSUniv. Paris Sud 11Palaiseau CedexFrance
  2. 2.Centre for Quantum TechnologiesNational University of SingaporeSingaporeSingapore

Personalised recommendations