The European Physical Journal Special Topics

, Volume 217, Issue 1, pp 43–53 | Cite as

Prethermalization in one-dimensional Bose gases: Description by a stochastic Ornstein-Uhlenbeck process

  • Tim Langen
  • Michael Gring
  • Maximilian Kuhnert
  • Bernhard Rauer
  • Remi Geiger
  • David Adu Smith
  • Igor E. Mazets
  • Jörg Schmiedmayer
Regular Article

Abstract

We experimentally study the relaxation dynamics of a coherently split one-dimensional Bose gas using matterwave interference. Measuring the full probability distributions of interference contrast reveals the prethermalization of the system to a non-thermal steady state. To describe the evolution of noise and correlations we develop a semiclassical effective description that allows us to model the dynamics as a stochastic Ornstein-Uhlenbeck process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    J. Berges, S. Borsányi, C. Wetterich, Phys. Rev. Lett. 93, 142002 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    M. Eckstein, M. Kollar, P. Werner, Phys. Rev. Lett. 103, 056403 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    M. Moeckel, S. Kehrein, New J. Phys. 12, 055016 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    C. Kollath, A.M. Läuchli, E. Altman, Phys. Rev. Lett. 98, 180601 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    L. Mathey, A. Polkovnikov, Phys. Rev. A 81, 033605 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    R. Barnett, A. Polkovnikov, M. Vengalattore, Phys. Rev. A 84, 023606 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    J. Marino, A. Silva, Phys. Rev. B 86, 060408(R) (2012)ADSCrossRefGoogle Scholar
  9. 9.
    J.M. Deutsch, Phys. Rev. A 43, 2046 (1991)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    M. Srednicki, Phys. Rev. E 50, 888 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    M. Rigol, V. Dunjko, M. Olshanii, Nature 452, 854 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I. Mazets, D. Adu Smith, E. Demler, J. Schmiedmayer, Science 337, 1318 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    T. Kitagawa, S. Pielawa, A. Imambekov, J. Schmiedmayer, V. Gritsev, E. Demler, Phys. Rev. Lett. 104, 255302 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    T. Kitagawa, A. Imambekov, J. Schmiedmayer, E. Demler, New J. Phys. 13, 073018 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    G.E. Uhlenbeck, L.S. Ornstein, Phys. Rev. 36, 823 (1930)ADSMATHCrossRefGoogle Scholar
  16. 16.
    D.S. Petrov, G.V. Shlyapnikov, J.T.M. Walraven, Phys. Rev. Lett. 85, 3745 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    J. Esteve, J.-B. Trebbia, T. Schumm, A. Aspect, C.I. Westbrook, I. Bouchoule, Phys. Rev. Lett. 96, 130403 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    R. Bistritzer, E. Altman, Proc. Natl. Acad. Sci. USA 104, 9955 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    A.A. Burkov, M.D. Lukin, E. Demler, Phys. Rev. Lett. 98, 200404 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    I.E. Mazets, T. Schumm, J. Schmiedmayer, Phys. Rev. Lett. 100, 210403 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    I.E. Mazets, J. Schmiedmayer, New J. Phys. 12, 055023 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    S. Tan, M. Pustilnik, L.I. Glazman, Phys. Rev. Lett. 105, 090404 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    T. Schumm, S. Hofferberth, L.M. Anderson, S. Wildermuth, S. Groth, I. Bar-Joeseph, J. Schmiedmayer, P. Krüger, Nature Phys. 1, 57 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    S. Hofferberth, I. Lesanovsky, T. Schumm, J. Schmiedmayer, A. Imambekov, V. Gritsev, E. Demler, Nature Phys. 4, 489 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, J. Schmiedmayer, Nature 449, 324 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    J. Reichel, V. Vuletic (eds.), Atom Chips (Wiley VCH, 2011)Google Scholar
  27. 27.
    A. Imambekov, I.E. Mazets, D.S. Petrov, V. Gritsev, S. Manz, S. Hofferberth, T. Schumm, E. Demler, J. Schmiedmayer, Phys. Rev. A 80, 033604 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    S. Manz, R. Bücker, T. Betz, Ch. Koller, S. Hofferberth, I.E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, T. Schumm, Phys. Rev. A 81, 031610(R) (2010)ADSCrossRefGoogle Scholar
  29. 29.
    D.A. Smith, S. Aigner, S. Hofferberth, M. Gring, M. Andersson, St. Wildermuth, P. Krüger, S. Schneider, T. Schumm, J. Schmiedmayer, Optics Expr. 19, 8471 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    P. Krüger, S. Hofferberth, I.E. Mazets, I. Lesanovsky, J. Schmiedmayer, Phys. Rev. Lett. 105, 265302 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    I. Lesanovsky, T. Schumm, S. Hofferberth, L.M. Andersson, P. Krüger, J. Schmiedmayer, Phys. Rev. A 73, 033619 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    N.K. Whitlock, I. Bouchoule, Phys. Rev. A 68, 053609 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    T. Betz, S. Manz, R. Bücker, T. Berrada, C. Koller, G. Kazakov, I.E. Mazets, H.-P. Stimming, A. Perrin, T. Schumm, J. Schmiedmayer, Phys. Rev. Lett. 106, 020407 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    A. Polkovnikov, E. Altman, E. Demler, Proc. Natl. Acad. Sci. USA 103, 6125 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    V. Gritsev, E. Altman, E. Demler, A. Polkovnikov, Nature Phys. 2, 705 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    C.S. Gerving, T.M. Hoang, B.J. Land, M. Anquez, C.D. Hamley, M.S. Chapman, Nature Comm. 3, 1169 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    S. Trotzky, Y.-A. Chen, A. Flesch, I.P. McCulloch, U. Schöllwöck, J. Eisert, I. Bloch, Nature Phys. 8, 325 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    M. Kuhnert, R. Geiger, T. Langen, M. Gring, B. Rauer, T. Kitagawa, E. Demler, D. Adu Smith, J. Schmiedmayer [arXiv:1211.5323]Google Scholar
  39. 39.
    C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer-Verlag, Berlin, 1985)Google Scholar
  40. 40.
    H.-P. Stimming, N.J. Mauser, J. Schmiedmayer, I.E. Mazets, Phys. Rev. Lett. 105, 015301 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    E. Mazets Igor, Phys. Rev. A 86, 055603 (2012)CrossRefGoogle Scholar
  42. 42.
    C. Mora, Y. Castin, Phys. Rev. A 67, 053615 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, 2004)Google Scholar
  44. 44.
    A. Polkovnikov, E. Altman, E. Demler, PNAS 103, 6125 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauß, T. Fukuhara, C. Gross, I. Bloch, C. Kollath, S. Kuhr, Nature 481, 484 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    D.T. Gillespie, Physical Rev. E 54, 2084 (1996)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Tim Langen
    • 1
  • Michael Gring
    • 1
  • Maximilian Kuhnert
    • 1
  • Bernhard Rauer
    • 1
  • Remi Geiger
    • 1
  • David Adu Smith
    • 1
  • Igor E. Mazets
    • 1
    • 2
  • Jörg Schmiedmayer
    • 1
  1. 1.Vienna Center For Quantum Science and Technology, AtominstitutTU WienWienAustria
  2. 2.Ioffe Physico-Technical Institute of the Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations