Advertisement

The European Physical Journal Special Topics

, Volume 216, Issue 1, pp 205–212 | Cite as

Coarse-grained kinetic equations for quantum systems

  • E.G. PetrovEmail author
Regular Article

Abstract

The nonequilibrium density matrix method is employed to derive a master equation for the averaged state populations of an open quantum system subjected to an external high frequency stochastic field. It is shown that if the characteristic time τstoch of the stochastic process is much lower than the characteristic time τsteady of the establishment of the system steady state populations, then on the time scale Δt ∼ τsteady, the evolution of the system populations can be described by the coarse-grained kinetic equations with the averaged transition rates. As an example, the exact averaging is carried out for the dichotomous Markov process of the kangaroo type.

Keywords

Density Matrix Quantum System European Physical Journal Special Topic Master Equation Born Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.I. Akhiezer, S.V. Peletminsky, Methods of statistical physics (Pergamon Press, Oxford, 1981)Google Scholar
  2. 2.
    K. Linderberg, B.J. West, The nonequilbrium statistical mechanics of open and closed systems (VCH Publisher, New York, 1990)Google Scholar
  3. 3.
    K. Blum, Density matrix theory and application (Plenum Press, New York, 1996)Google Scholar
  4. 4.
    E.G. Petrov, V.I. Teslenko, Theor. Math. Phys. 84, 986 (1991)CrossRefGoogle Scholar
  5. 5.
    P. Hänggi, P. Jung, Adv. Chem. Phys. 89, 239 (1995)Google Scholar
  6. 6.
    E.G. Petrov, I.A. Goychuk, V. May, Physica A 233, 560 (1996)CrossRefADSGoogle Scholar
  7. 7.
    E.G. Petrov, Phys. Rev. E 57, 94 (1998)CrossRefADSGoogle Scholar
  8. 8.
    I.A. Goychuk, P. Hänggi, Adv. Phys. 54, 525 (2005)CrossRefADSGoogle Scholar
  9. 9.
    E.G. Petrov, V.I. Teslenko, Chem. Phys. 375, 243 (2010)CrossRefADSGoogle Scholar
  10. 10.
    S. Nakajima, Progr. Theor. Phys. 20, 948 (1958)MathSciNetCrossRefzbMATHADSGoogle Scholar
  11. 11.
    R. Zwanzig, J. Chem. Phys. 33, 1338 (1960)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    R. Zwanzig, Physica 30, 1109 (1964)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    P.N. Argyres, P.L. Kelley, Phys. Rev. 134, A98 (1964)CrossRefADSGoogle Scholar
  14. 14.
    P.N. Argyres, E.S. Kirkpatrick, Ann. Phys. 42, 513 (1967)CrossRefADSGoogle Scholar
  15. 15.
    R. Kubo, J. Math. Phys. 4, 174 (1963)MathSciNetCrossRefzbMATHADSGoogle Scholar
  16. 16.
    A. Brissard, U. Frish, J. Quant. Spectrosc. Radiat. Transfer 11, 1767 (1971)CrossRefADSGoogle Scholar
  17. 17.
    A. Brissard, U. Frish, J. Math. Phys. 15, 524 (1974)CrossRefADSGoogle Scholar
  18. 18.
    V.E. Shapiro, M.N. Loginov, Physica A 91, 563 (1978)MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    N.G. Van Kampen, Stochastic processes in physucs and chemistry (North-Holland, Amsterdam, 1984)Google Scholar
  20. 20.
    P. Hänggi, Z. Physik B 31, 407 (1978)CrossRefADSGoogle Scholar
  21. 21.
    R.C. Bourett, U. Frish, A. Pouquet, Physica 65, 303 (1973)CrossRefADSGoogle Scholar
  22. 22.
    M. Auvergne, A. Pouquet, Physica 66, 409 (1973)CrossRefADSGoogle Scholar
  23. 23.
    P. Reineker, Ch. Warms, Th. Neidlinger, I. Barvik, Chem. Phys. 177, 713 (1993)CrossRefADSGoogle Scholar
  24. 24.
    I.A. Goychuk, Phys. Rev. E, 51, 6267 (1995)CrossRefADSGoogle Scholar
  25. 25.
    I.A. Goychuk, E.G. Petrov, V. May, Phys. Rev. E 56, 1421 (1997)CrossRefADSGoogle Scholar
  26. 26.
    P. Hänggi, The functional derivative and its use in the description of noisy dynamical systems, in: Stochastic processes applied to physics, L. Pesquera, M. Rodrigez, World Scientific (USA -distr. Heyden, Philadelphia, 1996), p. 69Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Bogolyubov Institute for Theoretical PhysicsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations