Advertisement

The European Physical Journal Special Topics

, Volume 216, Issue 1, pp 199–204 | Cite as

Melting of a polycrystalline material

Melting of real materials
  • Anatoly B. BelonoshkoEmail author
  • Timofei Lukinov
  • Leonid Burakovsky
  • Dean L. Preston
  • Anders Rosengren
Regular Article

Abstract

Calculating the melting temperature of a solid with a known model of interaction between atoms is nowadays a comparatively simple task. However, when one simulates a single crystal by molecular dynamics method, it does not normally melt at the melting temperature. Instead, one has to significantly overheat it. Yet, a real material melts at the melting point. Here we investigate the impact of the defects and the grain boundaries on melting. We demonstrate that defects and grain boundaries have similar impact and make it possible to simulate melting in close vicinity of thermodynamic melting temperature. We also show that the Z method might be non-applicable in discriminating a stable submelting phase.

Keywords

Melting Temperature European Physical Journal Special Topic Grain Boundary Diamond Anvil Cell Embed Atom Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.B. Belonoshko, S. Arapan, R. Martonak, A. Rosengren, Phys. Rev. B 81, 054110 (2010)CrossRefADSGoogle Scholar
  2. 2.
    A.B. Belonoshko, Science 275, 955 (1997)CrossRefGoogle Scholar
  3. 3.
    I.T. Todorov, W. Smith, K. Trachenko, M.T. Dove, J. Mater. Chem. 16, 1911 (2006)CrossRefGoogle Scholar
  4. 4.
    A.B. Belonoshko, R. Ahuja, B. Johansson, Phys. Rev. Lett. 84, 3638 (2000)CrossRefADSGoogle Scholar
  5. 5.
    A.B. Belonoshko, Cond. Matter. Phys. J. 13, 23605 (2010)CrossRefGoogle Scholar
  6. 6.
    R.A. Aziz, V.P.S. Nain, J.C. Carley, W.L. Taylor, G.T. McConville, J. Chem. Phys. 70, 4330 (1979)CrossRefADSGoogle Scholar
  7. 7.
    M. Ross, J. Chem. Phys. 73, 4445 (1980)CrossRefADSGoogle Scholar
  8. 8.
    A.B. Belonoshko, R. Ahuja, B. Johansson, Phys. Rev. Lett. 87, 165505 (2001)CrossRefADSGoogle Scholar
  9. 9.
    A.B. Belonoshko, L. Koci, A. Rosengren, Phys. Rev. B 85, 012503 (2012)CrossRefADSGoogle Scholar
  10. 10.
    A.B. Belonoshko, N.V. Skorodumova, A. Rosengren, B. Johansson, Phys. Rev. B 73, 012201 (2006)CrossRefADSGoogle Scholar
  11. 11.
    A.B. Belonoshko, N.V. Skorodumova, S. Davis, A.N. Osiptsov, A. Rosengren, B. Johansson, Science 316, 1603 (2007)CrossRefADSGoogle Scholar
  12. 12.
    L. Burakovsky, S.-P. Chen, D.L. Preston, A.B. Belonoshko, A. Rosengren, A.S. Mikhaylushkin, S.I. Simak, J.A. Moriarty, Phys. Rev. Lett. 104, 255702 (2010)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Anatoly B. Belonoshko
    • 1
    Email author
  • Timofei Lukinov
    • 1
  • Leonid Burakovsky
    • 2
  • Dean L. Preston
    • 3
  • Anders Rosengren
    • 1
  1. 1.Condensed Matter Theory, Theoretical PhysicsAlbaNova University Center, KTH Royal Institute of TechnologyStockholmSweden
  2. 2.Theoretical Physics Division, Los Alamos National LaboratoryNew MexicoUSA
  3. 3.Applied Physics Division, Los Alamos National LaboratoryNew MexicoUSA

Personalised recommendations