Advertisement

The European Physical Journal Special Topics

, Volume 216, Issue 1, pp 191–198 | Cite as

Polymers in anisotropic environment with extended defects

  • V. Blavatska
  • K. Haydukivska
Regular Article
  • 62 Downloads

Abstract

The conformational properties of flexible polymers in d dimensions in environments with extended defects are analyzed both analytically and numerically. We consider the case of structural defects correlated in ε d dimensions and randomly distributed in the remaining d − ε d . Within the lattice model of self-avoiding random walks (SAW), we apply the pruned-enriched Rosenbluth method (PERM) and find the estimates for scaling exponents and universal shape parameters of polymers in the environment with parallel rod-like defects (ε d = 1). An analytical description of the model is developed within the des Cloizeaux direct polymer renormalization scheme.

Keywords

Polymer Chain European Physical Journal Special Topic Conformational Property Parallel Orientation Impurity Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979), p. 324Google Scholar
  2. 2.
    A.Yu. Grosberg, A.R. Khokhlov, Statistical Physics of Macromolecules (AIP Press, New York, 1994)Google Scholar
  3. 3.
    J. des Cloizeaux, G. Jannink, Polymers in Solutions: Their Modelling and Structure (Clarendon Press, Oxford, 1990), p. 886Google Scholar
  4. 4.
    B. Li, N. Madras, A.D. Sokal, J. Stat. Phys. 80, 661 (1995)CrossRefzbMATHADSMathSciNetGoogle Scholar
  5. 5.
    J.A. Aronovitz, D.R. Nelson, J. Physique 47, 1445 (1986)CrossRefMathSciNetGoogle Scholar
  6. 6.
    O. Jagodzinski, E. Eisenriegler, K. Kremer, J. Phys. I (France) 2, 2243 (1992)CrossRefGoogle Scholar
  7. 7.
    D.S. Cannel, F. Rondelez, Macromolecules 13, 1599 (1980)CrossRefADSGoogle Scholar
  8. 8.
    R.J. Ellis, A.R. Minton, Nature 425, 27 (2003)CrossRefADSGoogle Scholar
  9. 9.
    K. Kremer, Z. Phys. 49, 149 (1981)CrossRefGoogle Scholar
  10. 10.
    B.K. Chakrabarti, J. Kertesz, Z. Phys. B – Cond. Matter 44, 221 (1981)CrossRefMathSciNetGoogle Scholar
  11. 11.
    M. Sahimi, J. Phys. A: Math. Gen. 17, L379 (1984)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    P.M. Lam, Z.Q. Zhang, Z. Phys. B – Cond. Matter 56, 155 (1984)CrossRefMathSciNetGoogle Scholar
  13. 13.
    J.W. Lyklema, K. Kremer, Z. Phys. B – Cond. Matter 55, 41 (1984)CrossRefGoogle Scholar
  14. 14.
    S.B. Lee, H. Nakanishi, Phys. Rev. Lett. 61, 2022 (1988)CrossRefADSGoogle Scholar
  15. 15.
    S.B. Lee, H. Nakanishi, Y. Kim, Phys. Rev. B 33, 9561 (1989)CrossRefADSGoogle Scholar
  16. 16.
    Y. Kim, J. Phys. A: Math. Gen. 20, 1293 (1987)CrossRefADSGoogle Scholar
  17. 17.
    B.J. Cherayil, J. Chem. Phys. 92, 6246 (1990)CrossRefADSGoogle Scholar
  18. 18.
    A.K. Roy, A. Blumen, J. Stat. Phys. 59, 1581 (1990)CrossRefADSGoogle Scholar
  19. 19.
    P.M. Lam, J. Phys. A: Math. Gen. 23, L831 (1990)CrossRefADSGoogle Scholar
  20. 20.
    Y. Kim, Phys. Rev. A 45, 6103 (1992)CrossRefADSGoogle Scholar
  21. 21.
    H. Nakanishi, S.B. Lee, J. Phys. A: Math. Gen. 24, 1355 (1991)CrossRefADSGoogle Scholar
  22. 22.
    C. Vanderzande, A. Komoda, Phys. Rev. A 45, R5335 (1992)CrossRefADSGoogle Scholar
  23. 23.
    Y. Kim, J. Phys. C 16, 1345 (1983)CrossRefADSGoogle Scholar
  24. 24.
    Y. Kim, J. Phys. A 20, 1293 (1987)CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    K.Y. Woo, S.B. Lee, Phys. Rev. A 44, 999 (1991)CrossRefADSGoogle Scholar
  26. 26.
    K. Barat, S.N. Karmakar, B.K. Chakrabarti, J. Phys. A 1991, 851 (1991)CrossRefADSGoogle Scholar
  27. 27.
    P. Grassberger, J. Phys. A 26, 1023 (1993)CrossRefADSGoogle Scholar
  28. 28.
    M.C. Rintoul, J. Moon, H. Nakanishi, Phys. Rev. E 49, 2790 (1994)CrossRefADSGoogle Scholar
  29. 29.
    S.B. Lee, J. Korea Phys. Soc. 29, 1 (1996)zbMATHGoogle Scholar
  30. 30.
    V. Blavatska, W. Janke, Europhys. Lett. 82, 66006 (2008)CrossRefADSGoogle Scholar
  31. 31.
    V. Blavatska, W. Janke, Phys. Rev. Lett. 101, 125701 (2008)CrossRefADSGoogle Scholar
  32. 32.
    V. Blavatska, W. Janke, J. Phys. A 42, 015001 (2009)CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    A.L. Dullen, Porous Media: Fluid Transport and Pore Structure (Academic, New York, 1979)Google Scholar
  34. 34.
    S.M. Dorogovtsev, Fiz. Tverd. Tela (Leningrad) 22, 321 (1980)Google Scholar
  35. 35.
    A. Baumgartner, M. Muthukumar, Adv. Chem. Phys. XCIV, 625 (1996)Google Scholar
  36. 36.
    D. Boyanovsky, J.L. Cardy, Phys. Rev. B 33, 154 (1982)CrossRefADSGoogle Scholar
  37. 37.
    V. Blavatska, C. von Ferber, Yu. Holovatch, Phys. Rev. B. 67, 094404 (2002)CrossRefADSGoogle Scholar
  38. 38.
    V. Blavatska, C. von Ferber, Yu. Holovatch, Acta Phys. Slov. 52, 317 (2002)Google Scholar
  39. 39.
    P. Grassberger, Phys. Rev. E 56, 3682 (1997)CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    M.N. Rosenbluth, A.W. Rosenbluth, J. Chem. Phys. 23, 356 (1955)CrossRefGoogle Scholar
  41. 41.
    F.T. Wall, J.J. Erpenbeck, J. Chem. Phys. 30, 634 (1959)CrossRefADSGoogle Scholar
  42. 42.
    H.P. Hsu, V. Mehra, W. Nadler, P. Grassberger, J. Chem. Phys. 118, 444 (2007)CrossRefADSGoogle Scholar
  43. 43.
    M. Bachmann, W. Janke, Phys. Rev. Lett. 91, 208105 (2003)CrossRefADSGoogle Scholar
  44. 44.
    M. Bachmann, W. Janke, J. Chem. Phys. 120, 6779 (2004)CrossRefADSGoogle Scholar
  45. 45.
    D. Thirumalai, Phys. Rev. A 37, 269 (1988)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • V. Blavatska
    • 1
  • K. Haydukivska
    • 1
  1. 1.Institute for Condensed Matter Physics of the National Academy of Sciences of UkraineLvivUkraine

Personalised recommendations