Advertisement

The European Physical Journal Special Topics

, Volume 216, Issue 1, pp 181–190 | Cite as

Polymer-attractive spherical cage system

  • Handan ArkınEmail author
  • Wolfhard JankeEmail author
Regular Article

Abstract

We analyze the structural behavior of a single polymer chain inside an attractive sphere. Our model is composed of a coarse-grained polymer governed by Lennard-Jones interactions of the monomers and an attractive sphere potential which follows by integrating the monomer-monomer interaction over the (inner) surface of the sphere. By means of extensive multicanonical Monte Carlo simulations it is shown that the system exhibits a rich phase diagram in the adsorption strength-temperature (εT) plane ranging from highly ordered and compact to extended and random coil structures and from desorbed to partially or even completely adsorbed conformations. These findings are identified with different energetic and structural observables. The resulting phase diagram in the εT plane is compared with that for a polymer adsorbing to a plane, attractive substrate obtained previously by Möddel, Bachmann, and one of the authors.

Keywords

Dock European Physical Journal Special Topic Layering Transition Adsorption Transition Attraction Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.F. Service, Science 270, 230 (1995)CrossRefADSGoogle Scholar
  2. 2.
    S. Walheim, E. Schaffer, J. Mlynek, U. Steiner, Science 283, 520 (1999)CrossRefADSGoogle Scholar
  3. 3.
    S. Brown, Nat. Biotechn. 15, 269 (1997)CrossRefGoogle Scholar
  4. 4.
    R. Braun, M. Sarikaya, K. Schulten, J. Biomater. Sci. Polymer Edn. 13, 747 (2002)CrossRefGoogle Scholar
  5. 5.
    S.R. Whaley, D.S. English, E.L. Hu, P.F. Barbara, A.M. Belcher, Nature 405, 665 (2000)CrossRefADSGoogle Scholar
  6. 6.
    K. Goede, P. Busch, M. Grundmann, Nano Lett. 4, 2115 (2004)CrossRefADSGoogle Scholar
  7. 7.
    M. Bachmann, K. Goede, A.G. Beck-Sickinger, M. Grundmann, A. Irbäck, W. Janke, Angew. Chem. Int. Ed. 49, 9530 (2010)CrossRefGoogle Scholar
  8. 8.
    H. Arkın, W. Janke, Phys. Rev. E 85, 051802 (2012)CrossRefADSGoogle Scholar
  9. 9.
    H. Arkın, W. Janke, J. Phys. Chem. B 116, 10379 (2012)CrossRefGoogle Scholar
  10. 10.
    M. Möddel, M. Bachmann, W. Janke, J. Phys. Chem. B 113, 3314 (2009)CrossRefGoogle Scholar
  11. 11.
    M. Möddel, W. Janke, M. Bachmann, Phys. Chem. Chem. Phys. 12, 11548 (2010)CrossRefGoogle Scholar
  12. 12.
    M. Möddel, W. Janke, M. Bachmann, Macromolecules 44, 9013 (2011)CrossRefADSGoogle Scholar
  13. 13.
    E. Eisenriegler, Polymers near Surfaces (World Scientific, Singapore, 1993)Google Scholar
  14. 14.
    G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove, B. Vincent, Polymers at Interfaces (Chapman and Hall, London, 1993)Google Scholar
  15. 15.
    H.W. Diehl, M. Shpot, Nucl. Phys. B 528, 595 (1998)CrossRefzbMATHADSMathSciNetGoogle Scholar
  16. 16.
    A. Sikorski, Macromol. Theory Simul. 11, 359 (2002)CrossRefGoogle Scholar
  17. 17.
    M. Bachmann, W. Janke, Phys. Rev. Lett. 95, 058102 (2005)CrossRefADSGoogle Scholar
  18. 18.
    M. Bachmann, W. Janke, Phys. Rev. E 73, 041802 (2006)CrossRefADSGoogle Scholar
  19. 19.
    M. Bachmann, W. Janke, Phys. Rev. E 73, 020901(R) (2006)CrossRefADSGoogle Scholar
  20. 20.
    K. Binder, J. Baschnagel, M. Müller, W. Paul, F. Rampf, Macromol. Symp. 237, 128 (2006)CrossRefGoogle Scholar
  21. 21.
    J. Luettmer-Strathmann, F. Rampf, W. Paul, K. Binder, J. Chem. Phys. 128, 064903 (2008)CrossRefADSGoogle Scholar
  22. 22.
    S. Karalus, W. Janke, M. Bachmann, Phys. Rev. E 84, 031803 (2011)CrossRefADSGoogle Scholar
  23. 23.
    M. Bachmann, H. Arkın, W. Janke, Phys. Rev. E 71, 031906 (2005)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    F.H. Stillinger, T. Head-Gordon, C. L. Hirshfeld, Phys. Rev. E 48, 1469 (1993)CrossRefADSGoogle Scholar
  25. 25.
    F.H. Stillinger, T. Head-Gordon, Phys. Rev. E 52, 2872 (1995)CrossRefADSGoogle Scholar
  26. 26.
    A. Irbäck, C. Peterson, F. Potthast, O. Sommelius, J. Chem. Phys. 107, 273 (1997)CrossRefADSGoogle Scholar
  27. 27.
    A. Irbäck, C. Peterson, F. Potthast, Phys. Rev. E 55, 860 (1997)CrossRefADSGoogle Scholar
  28. 28.
    W.A. Steele, Surf. Sci. 36, 317 (1973)CrossRefADSGoogle Scholar
  29. 29.
    R. Hentschke, Macromol. Theory Simul. 6, 287 (1997)CrossRefGoogle Scholar
  30. 30.
    B.A. Berg, T. Neuhaus, Phys. Lett. B 267, 249 (1991)CrossRefADSGoogle Scholar
  31. 31.
    B.A. Berg, T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992)CrossRefADSGoogle Scholar
  32. 32.
    B. A. Berg, T. Çelik, Phys. Rev. Lett. 69, 2292 (1992)CrossRefADSGoogle Scholar
  33. 33.
    W. Janke, Int. J. Mod. Phys. C 3, 1137 (1992)CrossRefADSGoogle Scholar
  34. 34.
    B.A. Berg, Fields Inst. Commun. 26, 1 (2000)Google Scholar
  35. 35.
    W. Janke, Physica A 254, 164 (1998)CrossRefADSGoogle Scholar
  36. 36.
    B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans (Society for Industrial and Applied Mathematics [SIAM], Philadelphia, 1982)Google Scholar
  37. 37.
    W. Janke, Monte Carlo methods in classical statistical physics, Computational Many-Particle Physics, Wilhelm & Else Heraeus Summerschool, Greifswald, H. Fehske, R. Schneider, A. Weiße, Lect. Notes Phys. 739 (Springer, Berlin, 2008), p. 79Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität LeipzigLeipzigGermany
  2. 2.Department of Physics EngineeringFaculty of Engineering, Ankara UniversityAnkaraTurkey

Personalised recommendations