The European Physical Journal Special Topics

, Volume 216, Issue 1, pp 127–132 | Cite as

Induced long-time correlations in a two-component lattice gas

  • O.V. Kliushnychenko
  • S.P. LukyanetsEmail author
Regular Article


The distinguishability of at least two species of particles in the classical lattice gas with no interactions except hard-core exclusion entails additional interparticle correlations. A nonlinear mixing flow appears and manifests itself most pronouncedly in the case of signi- ficant difference between mobilities of species. It may cause induced correlations for a slow component mediated by a fast one. In the quasi-one-dimensional case, the long-time correlations are demonstrated to take place in a slow component, which is similar to the hydrodynamic correlations between colloidal particles. In the adiabatic approximation, these correlations may come into play only in the non-equilibrium case with the flow of a fast component present in the system.


European Physical Journal Special Topic Slow Component Pair Correlation Function Fast Component Adiabatic Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.A. Tahir-Kheli, R.J. Elliott, Phys. Rev. B 27, 844 (1983)CrossRefADSGoogle Scholar
  2. 2.
    B. Schmittmann, R.K.P. Zia, Statistical Mechanics of Driven Diffusive Systems (Academic Press, 1995)Google Scholar
  3. 3.
    K.-t. Leung, R.K.P. Zia, Phys. Rev. E 56, 308 (1997)CrossRefADSGoogle Scholar
  4. 4.
    R.S. Hipolito, R.K.P. Zia, B. Schmittmann, J. Phys. A: Math. Gen. 36, 4963 (2003)MathSciNetCrossRefzbMATHADSGoogle Scholar
  5. 5.
    S.P. Lukyanets, O.V. Kliushnychenko, Phys. Rev. E 82, 051111 (2010)CrossRefADSGoogle Scholar
  6. 6.
    P. Argyrakis, A.A. Chumak, M. Maragakis, N. Tsakiris, Phys. Rev. B 80, 104203 (2009)CrossRefADSGoogle Scholar
  7. 7.
    C. Mejia-Monasterio, G. Oshanin, Soft Matter 7, 993 (2011)CrossRefADSGoogle Scholar
  8. 8.
    O. Bénichou, A.M. Cazabat, J. De Coninck, M. Moreau, G. Oshanin, Phys. Rev. B 63, 235413 (2001)CrossRefADSGoogle Scholar
  9. 9.
    W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions (Cambridge University Press, New York, 1989)Google Scholar
  10. 10.
    B.J. Alder, T.E. Wainwright, Phys. Rev. A 1, 18 (1970)CrossRefADSGoogle Scholar
  11. 11.
    I. Pagonabarraga, M.H.J. Hagen, C.P. Lowe, D. Frenkel, Phys. Rev. E 59, 4458 (1999)CrossRefADSGoogle Scholar
  12. 12.
    M.H.J. Hagen, I. Pagonabarraga, C.P. Lowe, D. Frenkel, Phys. Rev. Lett 78, 3785 (1999)CrossRefADSGoogle Scholar
  13. 13.
    D. Frydel, H. Diamant, Phys. Rev. Lett. 104, 248302 (2010)CrossRefADSGoogle Scholar
  14. 14.
    B.U. Felderhof, J. Chem. Phys. 134, 024505 (2011)CrossRefADSGoogle Scholar
  15. 15.
    A. Chumak, A. Tarasenko, Surf. Sci. 91, 694 (1980)CrossRefADSGoogle Scholar
  16. 16.
    D.N. Zubarev, Nonequilibrium statistical thermodynamics (Plenum, New York, 1974)Google Scholar
  17. 17.
    K.-t. Leung, Phys. Rev. Lett. 73, 2386 (1994)CrossRefADSGoogle Scholar
  18. 18.
    P.M. Richards, Phys. Rev. B 16, 1393 (1977)MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    J. Zweiback, R.A. Smith, T.E. Cowan, G. Hays, K.B. Wharton, V.P. Yanovsky, T. Ditmire, Phys. Rev. Lett. 84, 2634 (2000)CrossRefADSGoogle Scholar
  20. 20.
    H. Li, J. Liu, C. Wang, G. Ni, R. Li, Z. Xu, Phys. Rev. A 74, 023201 (2006)CrossRefADSGoogle Scholar
  21. 21.
    S.H. Lamb, Hydrodynamics (Hardpress Publishing, 2012)Google Scholar
  22. 22.
    C.M. Pooley, G.P. Alexander, J.M. Yeomans, Phys. Rev. Lett. 22, 228103 (2007)CrossRefADSGoogle Scholar
  23. 23.
    A.-F. Bitbol, J.-B. Fournier, Phys. Rev. E 83, 061107 (2011)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Institute of Physics, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations