Advertisement

The European Physical Journal Special Topics

, Volume 216, Issue 1, pp 107–116 | Cite as

Stochastic evolution of a continuum particle system with dispersal and competition

Micro- and mesoscopic description
  • Dmitri FinkelshteinEmail author
  • Yuri KondratievEmail author
  • Yuri KozitskyEmail author
  • Oleksandr KutoviyEmail author
Regular Article

Abstract

A Markov evolution of a system of point particles in ℝ d is described at micro- and mesoscopic levels. The particles reproduce themselves at distant points (dispersal) and die, independently and under the effect of each other (competition). The microscopic description is based on an infinite chain of equations for correlation functions, similar to the BBGKY hierarchy used in the Hamiltonian dynamics of continuum particle systems. The mesoscopic description is based on a Vlasov-type kinetic equation for the particle’s density obtained from the mentioned chain via a scaling procedure. The main conclusion of the microscopic theory is that the competition can prevent the system from clustering, which makes its description in terms of densities reasonable. A possible homogenization of the solutions to the kinetic equation in the long-time limit is also discussed.

Keywords

Correlation Function European Physical Journal Special Topic Microscopic Theory BBGKY Hierarchy Poisson Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.N. Bogoliubov, Problemy dinamičeskoi teorii v statističeskoi fizike (Russian) [Problems of Dynamical Theory in Statistical Physics] (Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1946)Google Scholar
  2. 2.
    B.M. Bolker, S.W. Pacala, Theoret. Population Biol. 52, 179 (1997)CrossRefzbMATHGoogle Scholar
  3. 3.
    B.M. Bolker, S.W. Pacala, C. Neuhauser, Amer. Nat. 162, 135 (2003)CrossRefGoogle Scholar
  4. 4.
    J.T. Cox, Ann. Probab. 17, 1333 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    R.L. Dobrushin, Probl. Inform. Transmission 7, 149 (1971)Google Scholar
  6. 6.
    D. Finkelshtein, Y. Kondratiev, Y. Kozitsky, O. Kutoviy, Markov evolution of continuum particle systems with dispersion and competition, preprint 11123 SFB 701, Bielefeld, J. Math. Pures Appl. (submitted) (2011)Google Scholar
  7. 7.
    D.L. Finkelshtein, Yu.G. Kondratiev, O. Kutovyi, SIAM J. Math. Anal. 41, 297 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    D.L. Finkelshtein, Yu.G. Kondratiev, O. Kutovyi, J. Stat. Phys. 141, 158 (2010)CrossRefzbMATHADSMathSciNetGoogle Scholar
  9. 9.
    D.L. Finkelshtein, Yu.G. Kondratiev, O. Kutoviy, J. Func. Anal. 262, 1274 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    R.L. Dobrushin, Y.G. Sinai, Y.M. Sukhov, Dynamical systems of statistical mechanics, Itogi Nauki, (VINITI, 1985), eng. transl. Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics, II, edited by Ya. G. Sinai, Encyclopaedia Math. Sci. (Springer, Berlin Heidelberg, 1989), p. 285Google Scholar
  11. 11.
    Yu. Kondratiev, T. Kuna, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5, 201 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Yu. Kondratiev, O. Kutovyi, S. Pirogov, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11, 231 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Yu.G. Kondratiev, A.V. Skorokhod, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9, 187 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    D.J. Murrell, U. Dieckmann, R. Law, J. Theoret. Biol. 229, 421 (2004)CrossRefGoogle Scholar
  15. 15.
    C. Neuhauser, Notices AMS 48, 1304 (2001)zbMATHMathSciNetGoogle Scholar
  16. 16.
    A. North, O. Ovaskainen, Oikos 116, 1106 (2007)CrossRefGoogle Scholar
  17. 17.
    B. Perthame, P.E. Souganidis, Discrete Contin. Dyn. Syst. 13, 1235 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    E. Presutti, Scaling limits in statistical mechanics and microstructures in continuum mechanics, Theoretical and Mathematical Physics (Springer, Berlin, 2009)Google Scholar
  19. 19.
    H. Spohn, Large scale dynamics of interacting particles, Texts and Monographs in Physics (Springer, Berlin, 1991)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Institute of Mathematics, National Academy of Sciences of UkraineKiev-4Ukraine
  2. 2.Fakultät für Mathematik, Universität BielefeldBielefeldGermany
  3. 3.Instytut Matematyki, Uniwersytet Marii Curie-SklodowskiejLublinPoland

Personalised recommendations