The European Physical Journal Special Topics

, Volume 216, Issue 1, pp 95–105 | Cite as

On thermodynamics and mobility of ions enclosed within charged nanoporous system

  • Barbara Hribar-Lee
  • Marie Jardat
  • Vojko VlachyEmail author
Regular Article


New simulations and integral equation results are presented for a model partly quenched system composed of monovalent ions. Static and dynamic properties of the system are explored using the replica Ornstein–Zernike theory in the hypernetted chain approximation and Brownian dynamic simulations. The model system consists of two subsystems: one is a collection of charged obstacles (matrix), and the other is an invading electrolyte. The overall system is electroneutral, while the subsystems are not. Charged species are represented by Lennard–Jones spheres of equal size, with either positive or negative charge in the center. The solvent is treated as a continuous dielectric. The purpose of this study is to correlate the mobility of ions (self-diffusion coefficients) with their individual activity coefficients. In addition, the effects of the matrix preparation and of the conditions of observation (dielectric constant of solvent, temperature) are investigated. For the first time, the effect of the charged obstacles on the excess internal energy of the electrolyte solution is also examined.


European Physical Journal Special Topic Individual Activity Brownian Dynamic Nanoporous Material Total Ionic Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Pizio, S. Sokolowski, J. Phys. Stud. 2, 296 (1998)Google Scholar
  2. 2.
    M.L. Rosinberg, Liquids state methods for disordered systems, in New Approaches to Problems in Liquid State Theory Google Scholar
  3. 3.
    C. Caccamo, J.-P. Hansen, G. Stell (eds.), (Kluwer: Dordrecht, Holland, 1999), p. 245Google Scholar
  4. 4.
    L.D. Gelb, K.E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, Rep. Prog. Phys. 62, 1573 (1999)CrossRefADSGoogle Scholar
  5. 5.
    O. Pizio, Adsorption in Random Porous Media. in Computational Methods in Surface and Colloid Science Google Scholar
  6. 6.
    M. Borowko (ed.), Surfactant Science Series, vol. 89 (Marcel Dekker: New York, 2000), p. 293Google Scholar
  7. 7.
    B. Hribar-Lee, M. Lukšič, V. Vlachy, Annu. Rep. Prog. Chem. Sect. C 107, 14 (2011)CrossRefGoogle Scholar
  8. 8.
    R. Chang, K. Jagannathan, A. Yethiraj, Phys. Rev. E 69, 051101 (2004)CrossRefADSGoogle Scholar
  9. 9.
    W. Dong, V. Krakoviack, S.L. Zhao, J. Phys. Chem. C 111, 15910 (2007)CrossRefGoogle Scholar
  10. 10.
    V. Krakoviack, Phys. Rev. Lett. 94, 065703 (2005)CrossRefADSGoogle Scholar
  11. 11.
    V. Krakoviack, J. Phys.: Condens. Matt. 17, S3565 (2005)ADSGoogle Scholar
  12. 12.
    V. Krakoviack, Phys. Rev. E 75, 031503 (2007)CrossRefADSGoogle Scholar
  13. 13.
    M.A. Chavez-Rojo, R. Juarez-Maldonado, M. Medina-Noyola, Phys. Rev. E 77, 040401 (2008)CrossRefADSGoogle Scholar
  14. 14.
    V. Krakoviack, Phys. Rev. E 79, 061501 (2009)CrossRefADSGoogle Scholar
  15. 15.
    J. Kurzidim, D. Coslovich, G. Kahl, Phys. Rev. Lett. 103, 138303 (2009)CrossRefADSGoogle Scholar
  16. 16.
    J. Kurzidim, D. Coslovich, G. Kahl, Phys. Rev. E 82, 041505 (2010)CrossRefADSGoogle Scholar
  17. 17.
    K. Kim, K. Miyazaki, S. Saio, Europhys. Lett. 88, 36002 (2009)CrossRefADSGoogle Scholar
  18. 18.
    J. Kurzidim, D. Coslovich, G. Kahl, J. Phys.: Condens Matt. 23, 234122 (2011)ADSGoogle Scholar
  19. 19.
    M. Jardat, B. Hribar-Lee, V. Vlachy, Phys. Chem. Chem. Phys. 10, 449 (2008)CrossRefGoogle Scholar
  20. 20.
    B. Rotenberg, I. Pagonabarraga, D. Frenkel, Faraday Discuss. 144, 223 (2010)CrossRefADSGoogle Scholar
  21. 21.
    M. Jardat, B. Hribar-Lee, V. Vlachy, Soft Matt. 8, 954 (2012)CrossRefADSGoogle Scholar
  22. 22.
    J.J. Smith, I. Zarov, Langmuir 24, 2650 (2008)CrossRefGoogle Scholar
  23. 23.
    B. Hribar, V. Vlachy, L.B. Bhuiyan, C.W. Outhwaite, J. Phys. Chem. B 104, 11522 (2000)CrossRefGoogle Scholar
  24. 24.
    M. Lukšič, B. Hribar-Lee, V. Vlachy, J. Phys. Chem. B 111, 5966 (2007)CrossRefGoogle Scholar
  25. 25.
    I. Lipar, P. Zalar, C. Pohar, V. Vlachy, J. Phys. Chem. B 111, 10130 (2007)CrossRefGoogle Scholar
  26. 26.
    B. Hribar, V. Vlachy, O. Pizio, Mol. Phys. 100, 3093 (2002)CrossRefADSGoogle Scholar
  27. 27.
    R.S. Harned, B.B. Owen, The Physical Chemistry of Electrolyte Solutions, 3rd ed. (Reinhold, New York, 1958), p. 331Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • Barbara Hribar-Lee
    • 1
  • Marie Jardat
    • 2
  • Vojko Vlachy
    • 1
    Email author
  1. 1.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.UPMC Univ. Paris 06ParisFrance

Personalised recommendations