Advertisement

The European Physical Journal Special Topics

, Volume 216, Issue 1, pp 49–55 | Cite as

Fractal transit networks: Self-avoiding walks and Lévy flights

  • Christian von FerberEmail author
  • Yurij HolovatchEmail author
Regular Article

Abstract

Using the data on the Berlin public transport network, the present study extends previous observations of fractality within public transport routes by showing that also the distribution of inter-station distances along routes displays non-trivial power law behaviour. This indicates that the routes may in part also be described as Lévy-flights. The latter property may result from the fact that the routes are planned to be adapted to the fluctuating demand densities throughout the served area. We also relate this to optimization properties of Lévy flights.

Keywords

Fractal Dimension Probability Density Function European Physical Journal Special Topic Transport Route Transit Route 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Latora, M. Marchiori, Physica A 314, 109 (2002)CrossRefzbMATHADSGoogle Scholar
  2. 2.
    K.A. Seaton, L.M. Hackett, Physica A 339, 635 (2004)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    J. Sienkiewicz, J.A. Holyst, Phys. Rev. E 72, 046127 (2005)CrossRefADSGoogle Scholar
  4. 4.
    C. von Ferber, Yu. Holovatch, V. Palchykov, Condens. Matter Phys. 8, 225 (2005)CrossRefGoogle Scholar
  5. 5.
    P. Angeloudis, D. Fisk, Physica A 367, 553 (2006)CrossRefADSGoogle Scholar
  6. 6.
    H. Chang, B.-B. Su, Y.-P. Zhou, D.-R. He, Physica A 383, 687 (2007)CrossRefADSGoogle Scholar
  7. 7.
    S. Derrible, C. Kennedy, Physica A 389, 3678 (2010)CrossRefADSGoogle Scholar
  8. 8.
    B. Berche, C. von Ferber, T. Holovatch, Yu. Holovatch, Adv. Compl. Syst. 15, 1250063 (2012)CrossRefMathSciNetGoogle Scholar
  9. 9.
    T. Holovatch, Complex Transportation Networks: Resilience, Modelling and Optimisation, Ph.D. thesis, Nancy University, France & University of Coventry, GB, 2011 http://tel.archives-ouvertes.fr/tel-00652784/fr/
  10. 10.
    C. von Ferber, T. Holovatch, Yu. Holovatch, V. Palchykov, Physica A 380, 585 (2007)CrossRefADSGoogle Scholar
  11. 11.
    C. von Ferber, T. Holovatch, Yu. Holovatch, V. Palchykov, Eur. Phys. J. B 68, 261 (2009)CrossRefADSGoogle Scholar
  12. 12.
    B. Berche, C. von Ferber, T. Holovatch, Yu. Holovatch, Eur. Phys. J. B 71, 125 (2009)CrossRefADSGoogle Scholar
  13. 13.
    S. Thibault, A. Marchand, Réseaux et Topologie [Networks, topologies] (Institut National des Sciences Appliquées de Lyon, Villeurbanne 1987). The results of this work are cited from: Y. Lu and J. Tang, Environm. Plann. B 31, 895 (2004)CrossRefGoogle Scholar
  14. 14.
    P. Frankhauser, L’Espace Géographique 19, 45 (1990)CrossRefGoogle Scholar
  15. 15.
    L. Benguigui, M. Daoud: Geogr. Analysis 23, 362 (1991)Google Scholar
  16. 16.
    L. Benguigui, J. Phys. I 2, 385 (1992)Google Scholar
  17. 17.
    K.S. Kim, S.K. Kwan, L. Benguigui, M. Marinov, Cities 20, 31 (2003)CrossRefGoogle Scholar
  18. 18.
    B. Nienhuis, Phys. Rev. Lett. 49, 1062 (1982)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    R.A. Meyers, Finance, Econometrics and System Dynamics (Springer, Berlin, 2010)Google Scholar
  20. 20.
    M. Veillette, STBL: Alpha stable distributions for MATLAB (MATLAB Central File Exchange, 2012)Google Scholar
  21. 21.
    P. Grassberger, J. Phys. A 18, L463 (1985)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    M.E. Fisher, S.-k. Ma, B.G. Nickel, Phys. Rev. Lett. 29, 917 (1972)CrossRefADSGoogle Scholar
  23. 23.
    J.W. Halley, H. Nakanishi, Phys. Rev. Lett. 55, 551 (1985)CrossRefADSGoogle Scholar
  24. 24.
    N.E. Humphries, et al., Nature 465, 1066 (2010)CrossRefADSGoogle Scholar
  25. 25.
    C. von Ferber (unpublished)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Applied Mathematics Research Centre, Coventry UniversityCoventryUK
  2. 2.Heinrich-Heine Universität DüsseldorfDüsseldorfGermany
  3. 3.Institute for Condensed Matter Physics, National Acad. Sci. of UkraineLvivUkraine

Personalised recommendations