Advertisement

The European Physical Journal Special Topics

, Volume 216, Issue 1, pp 37–48 | Cite as

Brownian system in energy space

Non-equilibrium distribution function in energy representation
  • B.I. LevEmail author
Regular Article
  • 112 Downloads

Abstract

The main goal of this article is to present a simple way to describe non-equilibrium systems in energy space and to obtain new spacial solution that complements recent results of B.I. Lev and A.D. Kiselev, Phys. Rev. E 82 , (2010) 031101. The novelty of this presentation is based on the kinetic equation which may be further used to describe the non-equilibrium systems, as Brownian system in the energy space. Starting with the basic kinetic equation and the Fokker-Plank equation for the distribution function of the macroscopic system in the energy space, we obtain steady states and fluctuation relations for the non-equilibrium systems. We further analyze properties of the stationary steady states and describe several nonlinear models of such systems.

Keywords

Brownian Motion European Physical Journal Special Topic Dusty Plasma Langevin Equation Brownian Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Huang, Statistical mechanics (W.A. Benjamin, Inc. New York, 1969)Google Scholar
  2. 2.
    R. Balesku, Equilibrium and nonequilibrium statistical mechanics (J. Wiley and Sons, New York, 1978)Google Scholar
  3. 3.
    L.D. Landau, Statistical mechanics (Nauka, Moskwa, 1973)Google Scholar
  4. 4.
    S.R.D. Groot, P. Mazur, Non-equilibrium Thermodynamics (Dover, New York, 1974)Google Scholar
  5. 5.
    G.F. Mazenko, Nonequilibrium Statistical Mechanics (Wiley-VCH, New York, 2006)Google Scholar
  6. 6.
    R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, New York, 2001)Google Scholar
  7. 7.
    R.F. Streater, Statistical Dynamics: A Stochastic Approach to Nonequilibrium Thermodynamics (Imperial College Press, London, 1995)Google Scholar
  8. 8.
    J. Ross, Thermodynamics and Fluctuations far from Equilibrium (Springer Series in Chemical Physics, Springer, Berlin, 2008)Google Scholar
  9. 9.
    D. Zubaryev, Nonequilibrium statistical thermodynamics (Nauka, 1971)Google Scholar
  10. 10.
    C.W. Gardiner, P. Zoller, Quantum Noise (Springer, Berlin, 2000)Google Scholar
  11. 11.
    D.F. Wells, G.J. Milburn, Quantum Optics (Springer, Berlin, 1994)Google Scholar
  12. 12.
    B.I. Lev, A.G. Zagorodny, Phys. Lett. A376, 1101 (2009)CrossRefADSGoogle Scholar
  13. 13.
    J. Mehl, V. Blickle, U. Seifert, C. Bechinger, Phys. Rev. E 82, 032401 (2010)CrossRefADSGoogle Scholar
  14. 14.
    D. Chaudhuri, A. Chaudhuri, Phys. Rev. E 85, 021102 (2012)CrossRefADSGoogle Scholar
  15. 15.
    J.M. Horowitz, S. Vaikuntanathan, Phys. Rev. E 82, 061120 (2010)CrossRefADSGoogle Scholar
  16. 16.
    T. Tomé, M.J. de Oliveira, Phys. Rev. Lett. 108, 020601 (2012)CrossRefADSGoogle Scholar
  17. 17.
    M. Ponmurugan, Phys. Rev. E 82, 031129 (2010)CrossRefADSGoogle Scholar
  18. 18.
    S. Dorosz, M. Pleimling, Phys. Rev. E 83, 031107 (2011)CrossRefADSGoogle Scholar
  19. 19.
    D. Ben-Avraham, S. Dorosz, M. Pleimling, Phys. Rev. E 84, 011115 (2011)CrossRefADSGoogle Scholar
  20. 20.
    B.I. Lev, A.D. Kiselev, Phys. Rev. E 82, 031101 (2010)CrossRefADSGoogle Scholar
  21. 21.
    E. Nelson, Dynamical Theories of Brownian Motion, 2nd ed. (Princeton University Press, Princeton, 2001)Google Scholar
  22. 22.
    R.M. Mazo, Brownian Motion: Fluctuations, Dynamics and Applications, The International Series of Monographs on Physics (Clarendon Press, Oxford, 2002)Google Scholar
  23. 23.
    W. Horsthemke, R. Lefever, Noise-induced transition, Theory, Applications in Physics, Chemistry and Biology (Springer-Verlag, New York, 1984)Google Scholar
  24. 24.
    N.G. van Kampen, Stochastic process in physics and chemistry (North-Holland, Amsterdam, 1990)Google Scholar
  25. 25.
    A.J. Lichtenberg, M.A. Liberman, Regular and stochastic motion (Springer-Verlag, New York, 1984)Google Scholar
  26. 26.
    B.I. Lev, A.G. Zagorodny, Phys. Rev. E 84, 061115 (2011)CrossRefADSGoogle Scholar
  27. 27.
    B.I. Lev, V.B. Tymchyshyn, A.G. Zagorodny, Condens. Matter Phys. 12, 593 (2009)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Bogolyubov Institute for Theoretical Physics, National Academy of Science of UkraineKyivUkraine

Personalised recommendations